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FOREWORD

Phase and frequency tracking problems comprise some of the most
nettlesome nonlinear filtering problems in the realm of signal processing.
These problems have held the interest of control and communication
theorists at least since 1953/54 when Lehan and Parks, and Youla published
their work on maximum likelihood and optimum demodulation on an interval.
Over the years Cox, Viterbi, Cahn, Forney, and a host of others have
advocated dynamic programming for the solution of nonlinear filtering
problems. This research follows that tradition.

Dynamic Programming is advocated as a technique for finding the
maximum a posteriori (MAP) phase or frequency modulated sequence to pass
through a data set. The key idea is to pose a Markov chain model on the
circle (0,2w) for phase or frequency, and then generate candidate MAP
sequences that are consistent with the data and the a priori probability
structure.
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INTRODUCTION

Phase and Frequency tracking are the classic nonlinear filtering problems.
They arise in narrowband analog communication, data transmission, and spread
spectrum communication. As usually stated, the problem is to obtain a causal
estimate of the phase or frequency based on noisy phase modulated observations.
The best known solutions are phase-locked loops (PLL's).

In any truly nonlinear filtering approach to optimum phase tracking, the
basic problem is to propagate an a posteriori density, conditioned on an increasing
measurement record, much as is done in Kalman Filtering. Unfortunately, there
exist no finite-dimensional schemes for propagating the exact conditional density
or for propagating a finits-dimensional sufficient statistic. One must approximate.

Under this contract we have developed an approach to phase and frequency
sequence estimation (emphasis on the word sequence) that has its logical antecedents
in the filtering philosophy of Youla and the data decoding philosophy of Viterbi.
We have posed a maximum a posteriori probability (MAP) sequence estimation problem
that leads to nonlinear MAP equations not unlike the continuous-time MAP interval
equations. We have derived dynamic programming algorithms to efficiently solve for
survivor phase and frequency sequences that approximate the desired MAP sequence.
The algorithms also provide a handy mechanism for generating fixed-lag phase
estimates, although this is not the problem for which the algorithm is derived.

In a loosely related set of problems we have studied exact likelihood for
autoregressive moving average (ARHA) processes. We have derived fast algorithms
for constructing likelihood, and established interesting connections between the
work of Wold, Kolmogorov, Wiener, and Kalman. A fast Kalman filter has been realized
in 16-bit arithmetic on an 8086 microprocessor.

In the sections to follow, we outline the problems studied and summarize
important results.
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STATEMENT OF PROBLEMS STUDIED

We summarize here the main problems studied under this contract.

Phase Modelling. For phase and frequency tracking the first problem to be studied
is one of deriving suitable models for random phase and/or random frequency
modulation.

Dynamic Programing Algorithm Development. Once a phase model is derived, the
next problem is to derive a likelihood function and find a dynamic programming
algorithm to find the maximum of likelihood.

Performance Evaluation for Phase and Frequency Sequence Estimation. The next
problem is to simulate the dynamic programming algorithms on stochastic
data and calculate Monte-Carlo performance results.

Simultaneous Phase Tracking and Data Decoding. When complex data are transmitted
over phase jitter channels, there arises the problem of simultaneously tracking
phase and decoding data symbols. The problem is to derive a joint likelihood
function for phase and symbol sequences, maximize it with a dynamic program
algorithm, and compute Monte-Carlo performance results.

Maximum Likelihood Identification of ARMA Systems. The problem here is to derive
a fast algorithm to compute likelihood for autoregressive moving average (ARMA)
sequences.

Fixed Point Implementation of Kalman Filters. The fast Kalman gain algorithm is
a fixed point algorithm ideally suited for computation on a fixed point machine.
But the problems of scaling and rounding remain. The question here is one of
deriving scaling rules and calculating rounding error variances in time varying
Kalman filters.

I
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SUMMARY OF MOST IMPORTANT RESULTS

The most important results of this study are summarized below.

Phase Modelling. We have derived phase models for random phase, random FM,
and random chirp modulation. Each model is a Markov chain defined on a
cyclic group. Corresponding correlation and spectral results have been
derived. The results generalize existing results on the spectral theory of
chains, and leave one with the problem of selecting states, transition prob-
abilities, and run lengths to achieve model matching with more conventional
models. The results apply for coherent and noncoherent FM. The figure on the
following page gives a geometric picture of the kinds of phase and frequency
models we have used in most of our work on algorithm development, phase and
frequency tracking, and simultaneous phase tracking and data decoding. See
references 1,2, and 3 for additional details.

Dynamic Programming Algorithm Development. The basic measurement model in all
of our work has been the following:

z t  8 at eJ~t + n t

at : symbol drawn from a finite alphabet

Vt : either a directly modulated phase sequence for which
we know the transition probability density p($t+i/t)
or a function 0( ) of a frequency sequence

e. for which we know the transition probabilty density

Pt+/Ot

nt : a sequence of independent and identically distributed
normal random variables

With this model we have derived expressions for likelihood and found dynamic

programming algorithms for exactly maximizing or approximately maximizing
likelihood. Generally the algorithms take the form:

max max L K-1+ in p OK/KI-l + 90
OK'K-1 41' "' OK-2

The function g(.) depends on the details of the problem. See references 1,2,
and 3 for details about selecting g(.) and implementing the algorithm on a
finite trellis. The function L is likelihood.

It is our opinion that a variety of filtering problems in signal and image
processing can be reformulated as sequence or interval estimation'problems
for which likelihood can be derived and for which algorithms can be found
for approximating the maximum.
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Performance Evaluation for Phase and Frequency Sequence Estimation. Our
results are nicely summarized on the graphs of the following pages. The
first compares estimation error variance for the dynamic programming (or
Viterbi) solution with a host of other algorithms ranging from the phase
lock loop to the point mass filter and the Fourier coefficient filter.
The results apply to the problem of random walk phase tracking.

The next graph shows output SNR versus input CNR for sinusoidal modulation
of a carrier. We have adapted our random walk FM frequency tracker to this
problem and compared its performance with linear prediction trackers, and
the trackers of Tufts and of Toomey and Short.

Our performance results indicate that sequence estimation by the method of
dynamic programming to maxinize likelihood on a finite trellis provides a
way of improving on the performance of more classical causal estimators.
This improvement can be significant at low SNR.

Simultaneous Phase Trackinq and Data Decoding. The performance results for
this problem are contained in Reference 2, where a variety of binary, phase
shift keying, and quadrature shift keying communication problems are considered.
The third figure in the sequence of three figures that appears on the next
three pages shows just one of the many examples contained in Reference 2.
The graph shows how two simultaneous phase trackers and data decoders, namely
the Viterbi tracker and the jitter equalizer, achieve performance very close
to that achievable under coherent phase conditions. The results apply to
the decoding of 8-ary phase shift keyed symbols.
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Maximum Likelihood Identification of ARMA Systems. We have followed the lead
of Akaike and Anderson and Moore to write down the innovations representation
that reproduces the second order statistics of a stationary ARMA sequence. We
have then associated the gain of a Kalman filter with the triangular square
root of a Toeplitz matrix to rederive Morf's fast Kalman filter algorithm.
The result is a fast algorithm for implementing likelihood. The results are
summarized in References 4 and 5.

Fixed Point Implementation of Kalman Filters. Beginning with the innovations
representation of a stationary ARMA sequence, we have derived scaling rules to
prevent overflow in time varying Kalman filters and derived formulas for
rounding error variance. The scaling rule is

Q(kk) -2 m-l

s(k): inverse of time varying scale constant

q(k,k) : (k,k)th element of the state variance matrix

C : dynamic range of the fixed point representation

: design parameter that allows designer to control
the probability of overflow

This formula generalizes the results of Mullis and Roberts to time varying
cases.

The figure on the folUwing page illustrates our experimental setup for
implementing the Kalman filter on an 8086 microprocessor. The figure on
the next page shows a typical simulation showing performance on the fixed
point machine with that achievable on a floating point machine. The results
apply to one-step prediction. The circles highlight places where the
fixed point and floating point results differ by more than 1 bit in 6.
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EXPEIMENTAL SET UP
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most of the current communications literature we call our dy-
namic prograrnning algorithm a Vilerbi algorithm.

Cahn 1151 has suggested that phabc may be tracked with delay
in order to extend the so-called threshold. He proposes a Viterbi-
like algorithm for tracking carrier phase sequences whose reali-( zations satisfy dynamics constraints. There is certainly a philo-
sophical link between Cahn's work and ours. In fact it was
Cahn's paper that first aroused our interest in phase sequence
estimation. However the approaches are reially quite different.
Ungerboeck 1161 has proposed an algorithm for phase tracking
that makes use of a delta-modulation approximation to the
phase sequence and an approximate version of the Viterbi algo-
rithm. Tufts and Francis [17] have also recently proposed an
algorithm for obtaining smoothed phase estimates.

Modulo-2m Phas Sequence Estimatiuon 11. TtE BAsic PROsLEM

LOUIS L SCHARF, suitoi ast isi. DENNIS D). CX Let (Z5 } denote the complex observation sequence
Am C. JOHIAN MASRELIEZ, stUatmDa, isei! Z, e+N k - 1, 2, .

Akift-71le problntile evshdm at ofanudm walk as the circe hn where
senifis and the resslts we used to delve a maximus a peaseuiiii
pbt (MAP pf~ sinelmator ft- ohn. IU ~ soi ediullr hs Ni - Uk +jVk, N5 ii. N, for k ,.
a V11"s - A - ffwtackng phsee=m tas 1evsadmr"wIn U5 'AO), V:?(Oe)
1-v..)6 Tie sIl, 1- Is WhomI oi~lile a ceelkl emeiu for ' (,.)
elli6ibg figed-ll hase -1 -es Pulemamee eclsieristes we pro- Uk iU V1  for all k, 1, (1)

muse ma esuwedwit seed thed*tIlhWf~t~** I~til~ (0k) is a discrete-time: phase sequence to be discussed shortly

1. IMdMfODtJCflON and (Ne) is an additive noise sequence of independent identi-

Phase tracking is the classic nonlinear filtering problem. It cally distributed (i.i.d.) normal random variables. Our notation is
atrises in narrowband analog communication, dat trnmsin that N*LL_ N, mean N& and N, ame independent, and
and spread spectrum communication. As usually state, th Uk: N(O, ii ) indicates that (4 is a normal random variable with

prbe sto obtain acausal esiaeof the phase based on mean 0 and variance a.2. The sequence (Zk) may be thought of
problem ihse-oua ob etimas.Te betkonouin as a complex representation for the sample values appearing at
nois phas-odlatoservatos). Tebs nw oun the output of a quadrature demodulator. The problem is to

are phase-locke loops (PL~s).estimate a realization of the entire seqece().sa
tIn any truly nonlinear filtering approach to optimum phase from the measurement record {zk) ,. It turns out. that thlis
decnio the pase, conditionedton annrag mhe asrmet formulation also provides a convenient way to generate a se-densty f te pase conitinedon n icreaingmeaureentquen ce of fixed-lag; estimates. However. we emphasize that the
record, much as is done in Kahman filtering. Unfortunately, basic problem under investigation is one of estimating an entire
there exist no finite-dimensional schemes for propagating the sqecntoeo eeaigasqec ffxdlg hd
exact conditional density or for propagating a finite-dimensional intervcl, ot fieoin fmgnerting aslueins.Wme o xd-ag fi-
sufficient statistic. One must approximate. The interested reader in teal oixdpont osmoohigvotions Wmak the sint ode v)i-
may consult (1S1 for a review of the best known techniques or, ouaran butde imprtant obserfration htthoina mdel h)sis
better yet, go directly to the appropriate source [1)-[11. ivratudram l-~tasomto ntepae

In this correspondence we propose an approach to phase
sequence estimation (emphasis on the word sequence) that has its [il. tAiNoat WALK ON THE CIRCLE AS A MODEL. FR
logical antecedents in the filtering philosophy of Youla, (21 and PASE Nows
the data decoding philosophy of Viterbi 1141. We pose a maxi-
mum a posterWi probability (MAP) sequence estimation prob- The first, seemingly natural, choice for a random phase model
lem that leads; to nonlinear MAP equations not unlike the is the Wiener proces WQt) with incremental variance 002. Thi is
continuous-time MAP interval equations. Fortunately there ex- the most commonly used model for random phase acquisition.
ists a dynamic programming algorithm to efficiently solve for Most of the results in this correspondence may be obtained in a
survivor phase sequences that approximate the desired MAP formal way using this phase model, but certain technical difficul-
sequence. The algorithm also provides a handy mechanism for ties arise. First, there is no stationary distribution and, second,
generating fixed-lag phase estimates, although this is not the there is no rigorous way of defining a unique conditional proba-
problem for which the algorithm is derived. As is common in bility for transitions from a modulo-2v value of WQt) it) anothe

modulo-2v value at a later time t+ r. The latter difficulty is
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partial differential equation 1201 ['he modulo-2ur version of HA. call it HA. may be written

MA 0 ob_ (2) 0A =A, AHA +WA. (9)

Given 0A - 1 1, the random variable AA is Ot (6, 1, ow) As
where oj is the inlinitessimal variance. This equation holds in A, is a modulo-2-f version of A. it follows that the conditional
the strip -w<# 4~w. t>s. for any fixed - ir <* w. The density of 0k, given CJ I m5 #1. is the folded normal density of
boundary conditions are (6). For this reason we will often call the discrete-time process

limp(,/#,)8(#,on the circle (*A a inodulo-277 version of the discrete-time
li (*/, -5S,*) random walk (HA).

In Section VI I we discretize the phase space I -- ~ ir ) to phase
P(, -/i)P iX /s values J., m=-0,* M I with M odd. It is then necessary to

a P4, 114 a P#,- r/0 (3) characterize the transition probabilit) from t, to t., for all M 2

- ~""pairs of (I. f.). We choose for our definition of this transition

where 5 is the Dirac delta function. We are using the convention
that 0(t) denotes a random variable and #, a realization. When P(A C,/ 5  =,'~( 5 'm* i) (10)

the context is clear and there is no danger of confusion we will with b, selected so that
sometimes make no distinction in notation between a random 1
variable: and its realizations. T1he same cautionary note holds for M-I-~)I. 10l,*,M I.()
the discrete-time random variable Ok and the realization I A4.

The solution for p(,,/,) isM0
The sum on n in (6) must, of course, be truncated. This trunca-

P(#,/#.)tion may be selected to give the desired accuracy before the
1 /Zwci(:-s)algorithm of Section VII is run. There is no series truncation

whatsoever in the algorithm itself.

Ixp 21 Th4) ere is an important symmetry property of (10). It the J, are
.~ex t~ eJ(~,)( *a 1)) (4)equally spaced points on [-m,w), for example J,-I2v/M-

(M - l~v/M, the function,# depends only on I .- ,1 Thus if
It is easily seen that the process f*t) is conditionally approxi- the values of (10) are organized into an MxM matrix of
mately GJL(4, e,(1-s)). given (s-,for small! t-s. An eigen- transition probabilities the matrix is Toeplitz. We may compute
function expansion of the following form is also useful: the M-dimensional vector Q(t,7, 7 )with q'L'I(#k

Io*a -J.) and obtain any value of P(A 1, as
7, exp(-n'oj(t-s)/2)exp(jn(*,-*,)). 4. with n..Im-1I. In this way only an M-vector of transition

probabilities need be stored for cyclic reading.

() IV. TirE MAP SeQuENcE ESTIMAION PlaLEm Pmk

This is simply Poisson's summation formula for (4). From this MoDuto-2v PHAsE
expession it is dear that 4(t) becomes uniformly distributed as Consider the following maximization with respect to the mod-
I-S-.eo. Equation (5) has also been noted in [7) ulo-2v phase sequence (k I

Consder the discrete-time sequence (0k) obtained by sam- K
pling f(t) at the periodic sampling instants tt-k, k-%O,- --. Maxp((zk)l.(~)) (12)
CADl #k a realization of #,,. The transition density from #i,-I to (.).I
* is foutnd from (4) with a,!-eiT to be where p(., -) is tile joint density function for the K measure-

I 'I'ments (z )11 and the K modulo-2v phase values (#J)1. Maximi-Z exp~ (.A-*...I- 2~ aino this joint density function is equivalent t aii
=, OD zation of the a porerioti density p((#.s)K/{ZA)f The joint den-

sity in (12) may be written

By the Markov property of iliQ) it follows that (*Oa) is a
Markov sequence for which the joint distributilon of (0A) w may )A
be written -P((*a 1) fl 9L..,(ei*-,q.), (13)

K 
-

.v((#A,)" IPA/A.() where the last line follows since the NA in (1) are i.i.d. normal
A-i(7 random variables and because, conditionally,

where P(ZA/*s): (14)

Here9, (Xei0A, .. ) indicates that the conditional density of the
and the notation p(#*I/4): 171-w, w) indicates that 01 is uni- complexra6ndom variable Z(conditioned on#,)is normal with
formily distributed on v, ve). Other choices are also admissa mean e *,% and variance ci2.
ble: for example, P(is~(i*)with #0knwnco'e
spoads to a given initiial phase. N (eJA,.2)-(2,0.") exp( -- -e~ J0. 1

One may obtain the sm discrete-time model for (411i) by 2.
considering 01, to be a modulo-2w version of the followingphsinendtmawreteMA
dKiwee-tirm random walk: Dropping paeidenntterms wemawrtthMA

e 5 -e 5 + WA W1LJW~fok~l.sequence estimation problem as)

I I max

__ __ __ __ _________________
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where
A A

A, A-I k-I

Ax is the phase-corrected vector

A KCiA,-,Y",.'- O- oh (17) C t

k-I A-I

and ck and #, are, respectively, envelope and phase variables: cJ CIO

zk-Cke*A, + , , cAE[O, oo). It is clear from this form R
that the MAP phase sequence will be one that stays reasonably
close to the noisy phase variables 4', (to make cos(4, - #k) large)
while also maintaining a trajectory that is a priori reasonably a;. Not Shown
likely. Thus the MAP sequence strikes a balance between what
the noisy data #k says the phase is doing and what the transition Fig. 1. Nature of the MAP sequence.
probabilities P(#A/ A.-.1) say the phase can do. When the en-
velope ca is large there is more of a tendency to believe the
measured #k. This curious effect may be explained by noting the condition Im AK-0 (e.g., the sequence of maximum likei-
that the phase statistic *t is a modulo-2v unbiased estimate of hood estimates i -A), but these sequences do not also maxi-
*, with a variance that decreases approximately inversely with m" rK.
increasing c, 118]. VI. Tim MAP SEQUENCE FoR Ftxw PHASE ACQUISITION

V. CHARACTIaSTICS OF THE MAP SEQUENCE Suppose the underlying phase sequence (0),} is known to be
Given the envelope and phase variables {cK) and the) . t a constant sequence with the value of the constant uniformly

MAP phase sequence (iA,)f may be obtained by equating the distributed on [-w,w]. In this case the MAP sequence estimate
derivatives of rK to zero: is identical with the maximum likelihood (ML) estimate of an

a unknown phase parameter , in a complex normal model. For
,n1P(iq,,_,)+ -,lnp(j ,+,/j,) this reason, and for the insight it gives into phase estimation, we

include in the following paragraphs a short discussion of con-
Istant phase and envelope models. The inclusion of an unknown+-I,.(A,-A,_t)-0. k-I,2,.-.,K. (18) envelope c generalizes the discussion without changing the na-

ture of the phase estimate. This follows from the fact that the
The boundary conditions are r0-0 and phase estimate is uncoupled from the envelope estimate. The

bconverse is not true.(np( ,/io)-0, Consider ft joint density function for the data (zA),X, para-
(19) meterized by the envelope c and the phase #:

Conitin ) smpl a (Z )(A)E Iex{l - j Iz-ce41} (23Condition 1)simply reflects the fact thatp(,/#) is uniform on k, I
I- w, w). Condition 2) is a mathematical convenience that allows
us toput all the equations of (18) in the same form. Of course o d "' R e Ce'" - l
and + are not computed from the data (c,} and (#,,). - -j oc' X (24)

Equations (18) are nonlinear equations with two-point z. (24)
boundary conditions. They are analogous to the continuous-time where
MAP equations obtained for phase tracking on an interval.
While we cannot solve the equations of (18) expticitly we can d(#, c)- e x p  

Kc2 (25)
make some very interesting observations regarding the properties (2,~ K~1
of the MAP phase sequence.

It is easily verified from the conditional density of (6) that h({Z.},)-exp{

n "  in p l/*A)" (20) kk-I

It follows from the factorization theorem 121, p. II5] that the
Therefore when the K equations of (18) are summed and the complex statistic K- ' E-l' 1Z, is sufficient for the parameter pair
boundary conditions applied, all terms involving In p( (te /a) a
cancel. The sum on the terms involving lm(AA -A k) tele- (c,*). The ML estimate for the composite parameter a - ce
scopes, and we are left with the result is

K

Im Aa-0. (21) a-K' z t . (26)

Here Ax is Ax with #, set to the MAP estimate *A for k- A-I
1.2. -. , K. This allows us to make the following observation: This ML estimator is consistent, unbiased, efficient, and mini-
while maximizing the objective function rg . the MAP sequence mum variance unbiased. The corresponding ML estimates for I!
( IN} yields a maximum value for I71 of and * are

t,- (2A)+ 4,

A-I I

with the property that Im Aa-O. This property is illustrated in *-arg z s,. (27)
Fig. I. We note that there are many other sequences that satisfy A-I

"K-
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cNI,, C.l 4v/7q a ,

A 0

s -4v/7a

Fig. 2. MAP estimate for fixed phase acquisition.

Let and 4 be the estimators corresponding to the estimates I 23 4
eand .The estimator t is consistent, unbiased, efficient, and It
minimum variance unbiased. The phase estimator i is not
efficient and no efficient estimator exists. It is consistent but Fig. 3. Phase trellis illustrating evolution of surviving phase tracks
biased. However it is modulo-2v unbiased, which is the property
we want. The phase estimate , also obtained in 181 and 1171. in
different ways, is illustrated in Fig. 2. For if it did not we could retain ,_iand 1, and replace

Define the modulo-2vr estimator error A -(6--0)md 2,. (00}1- with a different sequence to get a larger value for rK. It

We may write is this observation which forms the basis of forward dynamic
K problem.

K-1 YThe trellis of Fig. 3 illustrates how the maximization of (32)
K-I ~ -. (eji-) . (8 proceeds. Tabulated values of P(#k,/4k- 1) are stored in a square

array (or vector which is read cyclically) whose dimensions
Ile statistic K-'X. _tZk e--I* is 9L(c, v2/K). The Jacibian of depend upon how finely the interval [ -v, r) is discretized. Let
the transformation between (C, A4) and K_'X i-tiZe -J# is -'• ZE , with Z -{(f,) ", be the finite-dimensional grid for which
Therefore the joint density of and A is p(oJko -i) is defined. That is, #k, is assumed to take on only

- t -- xthe values #k,- it, I -1,2Z•-•-, M, for each k. Let r,(JI, t.) be
g(e, ). c exp(__.. _leil J2la the value of the metric Ft corresponding to a phase traljectory

2r',/K 2oq!/K ) {j)k which terminates at phase-state it at stage k, afterpsin
through stage C,. at stage k - 1.

e2xp -2ci cos(A ) +c2] The algorithm begins with a computation of ri', t,,), i-
i~q.2l~e• 21,2K,. -.., M based on measured values of et and 4,t. If all phase

values are equally likely a priori, then In p(#,1/#,0) is constant on
(29) all values I,. Otherwise there is some a priori weighting in favor

This r suit is equivalent to 122, eq. (9.46), p. 413) with ap-. of some of the J,. A new measurement pair (C2,#2) is obtained
propriate change of notation. In (29) it is assumed that _-ir < A14 at k -2 and 172(fI, J,.) is computed for m - 1,2,... -, M using a
< v. On this interval g(c, Aj) is symmetrical about zero and table look-up (for example in a read-only memory) for the
therefore unbiased. We emphasize that 4 is only modulo-2v '(M(/4i ,,.Te maximum value of 172(l,, ,,) is de-
unbiased. termined (over all originating series J,.) and the corresponding

sequence (11, 111 is saved as a surior sequence terminating at
VII. Txe Vrrltai AL~O~mm i at stage 2; (1 denotes the originating state. 'Me survivor

The MAP sequence estimation problem is stated in (18). Note sequence is labeled with its corresponding length ra(,, f,). This
thatr, stisies he ecurioncalculation is repeated for each possible value of phase until all
tha Fasatsfis te rcurionpairs (JI, J,) and corresponding lengths 172(f, j,),/1- 1, 2, -• -, M,

rk-r 4k- +I ~khave been computed and stored (for example in a random access
F, ~ . -k ,_ + cCOS(4,- nP€t€ ) memory). There is a unique survivor sequence corresponding to

each state J / 1- 1, 2., U. Caution: In the pair (JI,.t,) the
r,-io cco( i -<t, )+In (¢/< )-(310) orgntiglate 11 depends on J,: i.e., / (/.The measure-

ments c-2 and 02 may now be discarded along with all extinct
sequence-L A new measurement pair (C34.3) is now obtained.

The so-called path metric is and theprocedure continues.
I Let (#,,(k). j2(k),. • .. l,,(k)) be the MAP sequence based on
a c, cos(J,, - ,,) + In p(,O/#kt ). (31) k measurements; this sequence has the maximum value of r.

The parenthetical notation (k) denotes dependence on measure-
The maximization problem for obtaining the MAP phase ment interval. In general the MAP sequence estimate (j.t(k+
sequence may now be written 1),.-.. + t(k+ 1) based on measurements up to stage k+lI

may differ from the previous sequence estimate at every stage
max{ max r,,-i+lnp(,x/,-i)+ 1cjcoS(4,,x-#x), from I to k. However, as a practical matter, one can choosea

{*,Z ,( }-I. sufficiently large depth parameter k0 so that the sequence of

(32) fixed-lag estimates

This form leads to the following observation: the maximizing i,)(, kko k+2.3)

trajectory (call it (4,, }x), passing throuhg, on its way to ,gives an approximate MAP sequence estimate. Here 4,..to.(k) is
must arrve at ,alonli a route t ,--that maximizes 1". simply the rihase value k., sta,,es back. in the MAP seouence



-....

I!PF rRANSAtIIONS ON INFORMAnON ItHEoRY. voI.. 1I-26. NO. 5, SEPIIFailk I190 619

estinate based on A ineasureints. In this way one obtains. .a FCF (9] h
phase track with delay k0 . LOF [I4

Following Forney 1231 we may summarize the storage and * 1 (10] 4
computational requirements for the phase tracking algorithm as sF (15 5]. u.2.6
follows. 6 PILL

" storage : VTth.). k.o0,5,10 2
•VT CUAP)

(time index), Tabuloted Res .t 
,

A. (,.." ). - I.2', .M (survivor phase sequence T,ocko| 10 1090o' 0 I

terminating in C, at stage A . ,, 1 6 dB w. Plotted W1. to e Left *
LOF i 6 of the,, Tfut, posdomls ol 0

F,((,.,. ).l-1.2,-..M (survivor metric). ,,0 ,. O ,I0., -,o o. -

p(i,.). I. m- I''. M (transition probability matrix). GS , 20., 6.4 / e3

VTlI . 2 3.1 5,0.96 -.4

Initialization VT(MAPI 0.86 -5

k - 1. .__ ___ _L___ _'__'__ ___ _ 6

~ I-I. ,M,-4-3-2-i1012 3456
"i. I' '0,M. I ... 10,1,(02

I,, I)-lnp(c ,/0)+ 2 c cos(o 1 -J,). Fig. 4. Performance results for ow/og-O.0I

I- 1.2.. , M. In Fig. 4 Monte-Carlo simulation results for the Viterbi tracker
are presented for the parametrizations commonly considered in

Recursion the literature The results are compared with the point mass filter
(PMF) [8], tne Fourier coefficient rilter (FCF) [7J, the linear

rk. I, 6/,#),(4,L,.4)+lnp(,+, /*k L4,) quadrature filter (LQF) [91, and the Gaussian sum filter (GSF)
[13). Also shown are our simulation results for the PLL. These

+ 2c, 5 cos(*,+I- ), -,2, .. M results are presented to legitimize the simulation. The Viterbi
2a.2 tracker makes up more than 1.0 of the 2.0 dB performance gap

min r,. , ,.,,), I-. ,2,- -,M. between the PLL and an idealized linear tracker. In terms of ris
(L. phase error (in radians), the comparison between the PLL and

the Viterbi tracker goes as follows. The PLL has an rms phase
Measurement/Computation error of 1.26 rad at r m 1.0. The maximum achievable percentage

CA (envelope), improvement is 21 percent, corresponding to an ideal filter with
rms phase error of 1.0 rad. The rms error for the Viterbi tracker

(phase), operating at r-l.0 with k0 -10 is 1.12. This represents an

C, Cos(6- +)+ In P(4, - 6/# - .) (path metric), improvement of I I percent over the PLL The results for k0 - 0
show that (as expected) the Viterbi tracker is not as good as a

In Fig. 3 typical trajectories for this algorithm are illustrated. PLL as a zero-lag filter. In Fig. 4 the heavy squares denoted by
The heavy lines denote survivors and the light lines denote path VT(MAP) (see the symbol key) correspond to the smoothing
metric calculations that are made and then disc-rded in favor of variance achieved when the MAP sequence for a 500 sample run
survivors. At the third stage all calculations r( 2 ,f,,) are il- is used as the phase estimate. The results are averaged over 40
lustrated with light lines; the heavy line from C3 to J2 illustrates such runs. The tabulated results in Fig. 4 summarize the perfor-
that this path gives maximum 1722 , t,) and is therefore labeled mance characteristics of many different nonlinear phase track-
a survivor. Of course 12-J. The letters x on the trellis illustrate er. In the figure. performance results for the Viterbi tracker are
sequnces that have survived for a while before being ex- plotted just to the left of their true positions to avoid cluttering
terminated by the weight of evidence. The very heavy line at the presentation.
each measurement stage k denotes the current MAP sequence. We hasten to emphasize in the interest of fair play that all
The labeling numbers on the heavy paths denote the current results presented here for nonzero k0 are in reality smoothing
MAP sequence. The sequence of end points labeled with the solutions. Such solutions are expected to deliver the usual
numbers is a sequence of phase estimates. Note this sequence of smoothing gains over filtering solutions. This does not detract
phase estimates differs from the MAP phase sequence. The latter, from the Viterbi tracker as an attractive alternative in those
being a smoothing solution, is in fact generally smoother than applications where a short delay may be accepted in exchange
the former. for 1-2 dB performance gains.

VIII. PRf Ow NcE RESULTS IX. CONCLUSIONS

The phase space [ - w,) has been divided into Most I I equally We have derived a Viterbi algorithm for obtaining approxi-
spaced points and the Viterbi algorithm for phase tracking mate MAP phase sequence estimates on [- , v). The algorithm
implemented as outlined in Section VII. The crucial conditional is simple and fast by atonlinear filtering standards and ideally
probabilities p(k -(.I/#_ _ -i) have been computed as out- organized for hardware implementation. More dramatic perfor-
lined in Section IlI and stored in an M vector for cyclic reading. mance gains than those illustrated in Fig. 4 may be achieved
Random phase trajectories and measurement variables have when phase fluctuations are severe, i.e., when oa/.4a0.0l. The
been generated according to (8) and (I). The results of several reader is referred to [19) for applications of these results to phase
Monte-Carlo simulations are presented in Fig. 4. Each Monte- coherent data communication.
Carlo result has been obtained by running the Viterbi phase ACKNowLEDomENT
tracker (and the PLL) over 40 different trajectories, each trajec-
tory beginning with a uniformly distributed phase variable at The authors acknowledge the support of J. Lord, R. Mc-
k - I and continuing for 500 points. Various values of depth Gough, and B. Picinbobo. They thank 0. Macchi for helpful
parameter ho have been used. as indicated in the figure. (See 181 discussions and for her critique of the manuscript. C. Pariente
for a discussion of corresponding statistical sampling errors and conducted the Monte-Carlo simulations at the University of
I IN f,,r ,idiltonal Mofite-( ".rl restllls ) Paris-Sud using software originally developed C. J. Masreliez.
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Abstract

The techniques of dynamic programming have found a va;-iet'
of successful applications in signal and system theory. In this
paper we show how two knotty nonlinear filtering problems--phase
and frequency tracking--may be formulated and solved as forward
dynamic programming problems. The resulting solutions are fixed
interval smooths in which a most likely sequence is passed
through a data record.

1. INTRODUCTION

Phase and frequency tracking problems comprise some of the
most nettlesome nonlinear filtering problems in the realm of
signal processing. These problems have held the interest of
control and communication theorists at least since 1953/54 when

lehan and Parks (1] and Youla 12] published their work on maxi-
mum likelihood and optimum demodulation on an interval. Over
the years Cox 13], Viterbi 14]. Cain 15], Forney 16], and a host
if others have advocated dynamic programming for the solution of
nonlinear filtering problems. This is a papt-r in the same tra-
d Ii i on.

It this paper we di sttiis lorwird dVna.ir I rl'cr.1kiItn as it

ri. i,, I-I (i pportetd by 1t.i Armv Kvst..itI h 0II i-,,' K,.* . ,' Ii Yri-

I . '.rk, N( nui r tonti ,t D C ") )M,\ ( ' III (, .mid I," tHit lif it '
ot ' t,;,l~ 'l Ar| l t lI VA q h ' m i , t l 1 , I "lll !.- " - ' O i .

II.l , Il~.. il * I fa l.xill l l,/[l # l~
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I o W 1(111 1( I t I illd illy., (lht- i1..i~iI1111 -i II p. ' i IAV l t i , ' it

I 1'q li h.o ' V ni a I ;it td .SV 1e i vi. I o pl,;! Ih i'1 ., .1 AL , . lII'i key

idu' i.s to pose a1 NMirkov hiiii mth-)II wnI tle. i ic Ie v 1.,) or
hI.iw t it f ret.q|vltl v , ;ii1d t hen get*nrit c'ilil I ateit.. MAI' stlitiliv es t!lat

irt onJsist nt witht hi' :a l a .111d I e : . . hli h i I it v i ru -
tor . More deta I Is mav he I ound it I I j tKj

2. PHASE SEQUENCE FKSTI MA'I tIN

Figures I & ? dep i t two c lassa i ca I pbt,, vst imat ion problems:

oll.itillt phl as esWt imat ion end random t wak IIt pa , est imat Ion. In
these fig orc.e ind throughouct the paper 1z. ,...,Z I dentes the

dI;itai set nd tilt! nk k= i1+1, t i rt' e,cil x I ii.d. N(l, )r.v.s.

A Markov transition density (or probability inass function) is
denoted p(./.); f(.,.,... ,.) denotes a joint density function;
(. denotes integer part.

Pe u 4C 4-- A
(a4 ill

Figure 1: Constant Phase Estimation

ip $SE 4t rt"

A. A

Figure 2: Random Walk Phase Estimation
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l ii i i N 1 ) l eNh ll I li i l iv i -v . , i. .i lg l i ia i g, I h i , L a 1 ; a~ ! ; I / 1 i ,i i i I 
,

I inui ,e 1(,2"1) wlh,*,a liea%.airavllkl'il . ,ilI' , , lv al l ;ac ordl ing to

zk  - exp(.i0) f itk , k, I , I..... I

It is a straightforward excerise, in maximim likelihood (Mi.) theory

1 41 show

* - arg i. zI
k-l

vi shown in Figure la this estimator maximizes the log-likelihood
III (i t ,... IA t J:

0 - arg max xn f t(z ..... t;+)

.etometrically, the estimator Ls ob:ained by piecing measurements
together, feather-to-tip, and miasurlng Lith angle to the resulting
vector. This is illustrated in Figure lb. The diagram in Fig-
tire Ic illustrates that if each measurement is rotated through an
angle i, and each rotated measurement added to the previous, the
result is purely real.

Problem #l: Random Walk Phase (Figure 2)

Here the problem is to map the data set Z Into a phase se-
quence estimate 1l ,.... *t}..[0,21)t when measurements are gener-
ated according to

zk = exp(J#k) + nk kl,2...

l p(kk-l/ ) given

As shown in Figure 2a, the KAP phase sequence maximizes the log-
likelihood of (z .... z:

l' t( , ... i) - arg max. vn ft~ ..... ~zt~ ..... i

k I

Itere f is the joint density of the measurements and the phase

-ivOqxence. The likelihood log fL may be written

t = - , z-. t 4 log p(4-t t  l
)

2 t
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V. ,diown in Figure li this estimator maximizes. the log-IikelIhlhod

zt I

arg max f(z ..... zt;W)

An obvious approximation strategy, illustrated in Figure 1b,
is to zero-pad the measurements and estimate to as the I)F'r .ell
wh-re a maximum occurs:

q- j2wqk/Q
,)=arg max : zk e

UPq-q27i/Q k-

Z= 0 , k > t

Vroblem ,)l: Random Walk Frequency Estimation (Figure 4)

Here the problem is to map the data set Z into a frequency

sequence estimate (w when measurements

are generated accorda1nA to

Zk = exp(jw[k/NJk) + nk , k-0,1,...,t

P(,,[ k/N /WJk/N]]_ ) given

..\s shown in Figure 4a the MAP phase sequence maximizes the log-
likelihood of zo,...,zt I.

I( . . It/N] )  arg max It v t (Zo' .. ' I ;'10 1 1 . ' t/N I
w [k/N] )k=O

I i k,.lihood .t=] og f, Inalv lit written

l -i "l'iI L

, ,. ,. x ( . i i n '( I I
I  

.I-

t I I , .. t N

;J



lere X is I)1"1' ov r i kv til  dati hitjti . ,o l N .tiqlh.s. So i I j
takus values I n a d I s, rt Iv tt (say qZI /(0,q=O, I . . . . Q- I) one't
c.oi inqiement a dynaimic pi ,gramnrini a lporithm (n the lattice of
Figure 4h to decode the MAI' sequeti. Set (81 f)or details.

4. CONCLUS IONS

The problems discussed here generalize. The basic idea tos
to select states and transition proa l lit les to characterize an
underlying probabilistic structure, aud then to assign characters

(such as ebk or e' k/Nik) to the states. The resvting sequence
estimation algorithms are attractive because st:ragle goes like Q
(number of states) and computations are naturally parallel.

REFERENCES

[l) F. Lehan and R. Parks, "Optimum Demodulation," IRE
National Convention Record, part 8, pp. 101-103 (1953).

[2) D. C. Youla, "The Use of Maitimum Likelihood in Estimating
Continuously Modulated Intelligence Which Has Been
Corrupted by Noise," IMi Trans. Inform. Theory, IT-3,
pp. 90-105 (March 1954).

[3] H. Cox, "Recursive Nonlinear Filtering," Proc. National
Electronics Conference, vol. XXI, pp. 770-775 (1965).

[4 A. J. Viterbi. "Error Bounds for Convolutional Codes and
An Asymptotically Optimum Decoding Algorithm," IEEE
Trans. Inform. Theory, IT-15, pp. 260-269 (April 1969).

(51 C. R. Cahn, "Phase Tracking and Demodulation vith Delay,"
IEEE Trans. Inform. Theory, IT-2O, pp. 50-58 (Jan. 1974).

[61 G. D. Forney, "Maximum Likelihood Sequence Estimation of
Digital Sequences in the Presence of Intersymbol Inter-
ference," IEEE Trans. Inform. Theory, IT-18, pp. 363-378
(May 1972).

[7) L. L. Scharf, D. D. Cox, and C. J. Nasreliez, "Modulo-
2w Phase Sequence Estimation," IEEE Trans. Inform.
Theory, in print.

18] L. L. Scharf and H. Elliott, "A Random Sampler of
Dynamic Programalng Applications in Signal Processing
and Control," Proc. Thirteenth Asilomar Conference on
Cir., Synt., and Computers, pp. 7-13 (Nov. 5-7, 1979).



A DYNAMIC f ROGRAMMING ALGORITHM FOR
PHASE ESTIB ,TION AND DATA DECODING

ON RANDOM PHASE CHANNFLS

Odile Macchi and Louis L. Scharf

Reprinted from IEEE Transactions on Information Theory, Vol. IT-27, No. 5, September 1981
0018-9448/81/0900-0581$00.75 0 1981 IEEE



mtu TaAJSacTms 4 NwFORMAiON TwmOyt voL. rT-2. No. 5. sEPTmIu 1981 561

A Dynamic Programming Algorithm for
Phase Estimation and Data Decoding
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Abstaec-Tbe poleh of simlnouly ertimtfg phase and decod- 1. INTRODUCTION
WSg data symbols from baselmad data is posed. The phase Sequence Is

to be a rndom sequence on the circle, and the symbols we flHASE FLUCTUATIONS can significantly increase
assumed to be equally Ukely symbols transmiltted over a perfectly equalized 17 the error probability for symbols transmitted over a
channel. A dynamic pramming alorithm (Viterhi algoitham) is deie channel that may or may not have been equalized. This is
for decoding a msaximum a posteriwi (MAP) piase-symbol sequence on a especially true for phase shift keyed (PSK) and quadrature
finit dimensional phase-symbol treWs. A new and Interesting principle of
"Outmlty 1_forsmtaneonsly estimating plasm and &lcolo ph& amplitude shift keyed (QASK) symboling, in which case
amplitudle coded symbols leads to an efficient two-step decoding procedmre accurate phase discrimination is essential for symbol de-
ter decoding phase-symbo sequences. Simisdation resdits for binarY. U-szy coding. Even when the receiver contains a decision-directed
phase shift keyed (PSK), and lEquadratre amplitude shift keyed (QASJ() phase-locked loop (1DPLL), performance loss in signal-to-
symbol sets transmitted over random wal and sinusoidl jitter channels wre nosrai SR wth epctoachrntdoig
preseite andl comare with results one may obtain with a decision-dIrected nos rai(SR wth epctoachrntdoig
algorith, or wit the binmry Viterb alilorithm introduced by Ungerboeck. system can be in the range 5- 10 dB. This fact is established
Ww hen e fbichtatom wre severe and when occasional Iarp phase in I I for practical symbol sets and typical values of the
%haous exist MAP phase9-symbo sequence decoding on circles is phase variance parameter and symbol error probability.
superio to Ungebe stcpiuemhc nte ssueirt eIl~ On telephone lines, linear distortion and phase jitter

direted ehiles.dictate the use of a channel equalizer and some kind of

phase estimator to achieve high~ rate, low error probability
Manuscript received Decmber 26. 1979; revised November 17, 1980. data transmission. A common approach to phase estima-
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proximation algorithm. The complex gain is used to scale likely, given an entire sequence of recorded observations. It
and rotate the received signal, thereby correcting phase is this use of "future" and "past" received signal samples
jitter and normalizing rapid fading variations. Although that provides performance improvement over zero-lag
there is no explicit interest in phase estimation itself in the estimators such as the DDPLL. Details of the algorithm
JE, it is possible to interpret the structure as an adaptive are given in [8) and [9). For PSK and QASK symbol sets an
gain-phase correcting equalizer, interesting principle of optimality leads to an efficient

Both the DDPLL and the JE are very simple to imple- two-step decoding procedure. With this procedure, compu-
ment, but apparently neither achieves optimality with re- tational complexity is reduced by a factor greater than the
spect to any statistical criterion for symbol (or data) decod- number of admissible phase values per amplitude level.
ing. Furthermore, neither the DDPLL nor the JE is opti- This amounts to a factor of four for the 16-point QASK
mum for estimating and/or correcting phase. Both are diagram that has been recommended by CCITT for data
zero-lag phase estimators that cannot benefit from future transmission on telephone lines at 9600 bits/s. Finally, in
signal samples. Therefore, an important question to be order to make the computation and storage requirements
answered is whether or not symbol decoding can be im- tractable in the Viterbi algorithm, we use it in a fixed delay
proved using a better phase estimator. The answer, based mode, as do other authors. By appealing to known results
on the results of 11] and this paper, is that significant for fixed-lag smoothing of linearly observed data, we are
improvements can be realized when the phase fluctuations able to intelligently choose the fixed delay. Without signifi-
are severe if one is willing to pay the price of an increased cant performance loss we decode phase-symbol pairs at a
computational burden. In practice, cases of severe phase depth constant of k0 = 10. This obviates the need for huge
fluctuation can occur in high data rate PSK and QASK storage requirements for long sequences. With these mod-
systems in which the angular distance between symbols is ifications the Viterbi algorithm becomes a feasible, albeit
small. sophisticated, decoding procedure.

In [I] Ungerboeck recognized the potential of maximum Simulation results for the proposed Viterbi algorithm
a posteriori (MAP) sequence estimation for jointly estimat- (VA) are presented for several symbol sets consisting of
ing phase and decoding data symbols. A path metric was two, eight, or 16 symbols. Several types of phase jitter are
derived and its role in a forward dynamic programming investigated such as Gaussian and non-Gaussian random
algorithm for obtaining MAP phase-symbol sequences was walk and sinusoidal phase jitter. The resulting error proba-
indicated. Because of the way phase was modeled in [1], the bilities are compared with those of the simpler decision-
dynamic programming algorithm could not be solved di- directed algorithms (JE and DDPLL) and with those of the
rectly. Ungerboeck approximated the phase sequence as a DBVA. As expected, performance of the VA is always
process that could make discrete binary jumps and then superior to that of the other systems. On the other hand,
derived a dynamic programming algorithm for decoding the increase in computational burden is substantial, and
likely paths around a developing most likely path. The the improvement in performance is not always great enough
result is a tree-search algorithm which may branch left or to warrent the use of the VA. In our concluding remarks
right but never go straight. He obtained performance re- we discuss situations in which one might reasonably use
suits that were on the order of 3 dB superior in SNR to the the VA or the DBVA rather than a simpler decision-directed
DDPLL in a 16-QASK system, at interesting values of the algorithm such as the JE or the DDPLL.
phase variance parameter. We call the algorithm of (11 a
discrete binary Viterbi algorithm (DBVA). The reader is
referred also to [51 and [6] for discussions of other subopti- Remarks on Notation:

mal, but computationally tractable, algorithms for simulta- Throughout this paper .LI denotes statistical indepen-
neously estimating phase and decoding data symbols. dence. The notation {001)' will mean the set {0k, k =

In this paper we observe that baseband data is invariant I, 2,-..,K }. When the indexes I and K are missing (e.g.,
to modulo-21r transformations on the phase sequence. This {#k)), it is understood that K is infinite. The symbol N +

motivates us to wrap the phase around the circle, so to denotes the positive integers. The notation x: N1()&, v2)

speak, and obtain folded probability models for transition means the random variable x is normally distributed with
probabilities on the circle. When the phase process is mean p and variance a2; N1(pu, a2) will also be used to
normal random walk on the circle, then the transition denote the function (2#o2)- 1/2 exp (-(x - IA)2/2o 2}.
probabilities are described by a folded normal model. This When x is complex, x: N.(F, 02) means x is complex with
model has also been used in 171 and [81. It is then straight- density N(sA, 2 ) = (2vro)-'exp(-Ix - pl 2/2o 2). By
forward to pose a MAP sequence estimation problem for f(x/y) we mean the conditional probability density of the
simultaneous phase and symbol sequence decoding as de- random variable x, given the random variable y. Thus
scribed in [81 and [9]. The basic idea is to discretize the f(x/y) is generally a different function than f(w/:), even
phase space -wr, v) to a finite dimensional grid and to use though we use no explicit subscripting such as f l("/") to
a dynamic programming algorithm (Viterbi algorithm) to indicate so. We make no notational distinction between a
keep track of surviving phase-symbol sequences that can random variable and its realizations, relying instead on

ultimately approximate the desired MAP phase-symbol context to make the meaning clear. A density function for
sequence. The MAP phase-symbol sequence itself is the a random variable, evaluated at a particular realization of

entire sequence of past phases and symbols that is most the random variable is termed a likelihood function.
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Fig. I. Typical signal receiver for data transmission.
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Fig. 2. Symbol diagrams for PSK and QASK modulation schemes.

"Hatted" variables such as ;k refer always to MAP esti- + jn ) are the noise variables in the respective baseband
mates that maximize an a posteriori density. Finally, it is quadrature equalized channels. The variables nV)) and n?)

convenient to define the function can be shown to be independent when the carrier frequency

A 00 is in the middle of the input noise filter bandwidth and the

g. 4(x) = M -' 7 1 h[x - 12,r - (m - l)2,/M] additive channel noise is white. If the equalizer is perfect,

,=1 1=-00 _' then nk is the usual Gaussian, additive noise with zero-
(1) mean. If the equalizer is not perfect, then nk contains a

residual of the intersymbol interferences, and is not Gaus-
where h(-) is a probability density. The function g sian; nor are successive variables n), n) indepen-
plays an important role in our discussion of phase-symbol dent. However, for a reasonably good equalizer, we may
decoding on QASK symbol sets. assume that {nk) is a sequence of independent identically

distributed (i.i.d.) complex Gaussian variables. Strictly
II. SIGNAL AND PHASE MODELS speaking, this assumption is valid only at the input to the

equalizer when the baseband equivalent of the input noise
Assume complex data symbols (aA) are phase or phase- filter and low-pass demodulator is the so-called sampled

amplitude modulated onto a carrier and transmitted over a whitened matched filter of [10]. In practice, the assumption
channel with linear distortion and phase jitter. The re- of Gaussianity is more realistic than the assumption of
ceived signal-call it y(t)-is typically processed as il- independence for the sequence (00. Assuming that the
lustrated in Fig. . The signal y(t) is passed through a equalizer of Fig. I is perfect, we model the noise sequence
bandpass noise filter and demodulated with two quadra- (nk) as follows:
ture waveforms. The resulting complex baseband signal
xi() +jx 2 (t) is equalized with a complex adaptive nA = nV) +jn ),  k ( N +

equalizer in order to reduce the intersymbol interference n ) -U.n?, V (k, 1)
due to linear distortion in the channel. The equalized signal nV) -Ln '), k 96 1, nf) -LLnJ2), k * 1 (3)
is a sequence of samples at symbol rate 1/A (A is the
interval between successive data symbols). The output of n): N,(O, o2); nfl): N.,(0, q.).
the equalizer is a complex sequence x, = x4) + jxf) which Here 2a.' is the variance of the complex noise variable n,
is a noisy, phase-distorted, version of the original trans- and 2 is the variance of each real component.
mitted sequence. Thus we wrnitestevaine fec ra omoetConsider now the phase distortion (0). The term gener-

Xk = akek * + RAI k E N . (2) ally reflects two effects, one long-term and the other short-
term. In modern high speed data modems no carrier or

Here, (at} is the complex symbol sequence, typically en- pilot tone is transmitted for locking the local oscillator at
coded according to one of the diagrams illustrated in Fig. the receiver. Thus long-term large-range linear phase varia-
2. The sequence (#A} represents phase fluctuations (jitter tions result from frequency drift in the channel which
and frequency drift) in the channel. The two real compo- cannot be eliminated. In addition, nonlinear intermodula-
nents n .) and nf)of the complex noise sequence n, = nV) tion with local power supplies gives rise to short-term
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we may reflect all of the conditional probability mass into
C to obtain the transition (or conditional) probability
density

0 + -(0 - 121)

-
= 

-o

Fig. 3. Typical phase fluctuations: phase jitter and frequency drift. g1 (0k +1 (8)

where g, is the function defined in (1). Hereafter, g,(-) is
called the folded density of the phase increments. Usually,

small-range phase variations. The variations exhibit en- the phase increment is small and its distribution h(.) is
ergetic harmonic content at the harmonics of the funda- very narrow with respect to 21. Therefore, in the sum of
mental power supply frequency. Hence a realistic model (8) only one term is relevant and f(,k,+ /k) - h(o + -

for {€' } is 0k). In the normal case, this implies o,., < 27r, where 0,. is
p the variance of w,._As it is cumbersome to carry around the

OA 
= (o + 2,rBk) +1 Asin(27,rkA+ p,). k E N +  overbar notation 0k+) - Ok, we drop it with the caution

I that from here on 0,k is defined on C unless otherwise
(4) stated.

where P' = I .50 Hz or , =I -60 Hz, depending on the In the normal case [7], [81, the density gi(,0A+! - 0,)

place of use. A typical phase process is depicted in Fig. 3. may be written
The first term in parentheses in (4) is the so-called frequency g('k +I - 0Ak =t N,,.,(k + /2,oa). (9)

drift term and the summation term is the phase jitter. In -

practice, the constants 0o. B, (A,,. l pl)/' , vary with time This case and the Cauchy case (in which the distribution
kA but at an extremely slow rate. tails are much heavier than the normal tails) are studied in

The spectrum of the phase jitter, i.e., the behavior of A, the Appendix. It is shown that g,(x) achieves its maximum
versus v, has been investigated experimentally in [141. The at x = 0 and that it is monotonically decreasing on 0 -< x
spectrum is roughly fitted by a I/P 2 curve. A phenomeno- _ ff.logical model for phase having a I/ 2 spectrum (like that The sequence {#k)K is Markov. Therefore, we may write

of phase jitter at high frequencies) is the Wiener-Levy for the joint density of the K phases ( k} T

continuous time process. f(I.k)K)= n Ao/(A,+ 1 /.0"

i =t w(t) t>0. (5) ( )=dt

where {w(t)) is a white noise process. The discrete time f({:i/o}) =f(,t):the marginal density ofo1 .

analog is the independent increments sequence (10)

Ok =- I + w, k E N * (6) Usually. oo is uniformly distributed on C because phase

where {w(%) is a sequence of i.i.d. random variables with acquisition starts at k = I with no prior information about

even probability density h(w).' When wk: N~.,(0. ,2), then its value. By the independence of the n,, in (2), it follows
{4',} is the so-called normal random walk. that the conditional density of the measurement sequence

For short-term fluctuations, the model captures, with {X,}), given the phase and data sequences {O,}k {a,) , is

appropriate selection of h(w). the correlated evolution of K

phase. The main virture of the independent increments ((x,} /{(O,} , {aO,}) I lNa,(ae J", ).
model is that it forms a convenient basis from which to (10
derive optimum estimator structures which may then be
evaluated against more realistic phase sequences. Equations (8)- (1 I) form the basis for the derivation of a

Since the measurement model of (2) is invariant to MAP sequence estimator. The key element is that (%k) is .

modulo-21r translates of #k. we may represent phase as if it Markov sequence with a bounded range space I-ir, vr).

were a random sequence on the unit circle C or equiva- Discretization of this bounded interval leads to a finite-state

lently on the interval I -r, ir). Call # this representation model from which a finite dimensional dynamic program-

of #k. Note #_k + I may be written ming algorithm can be derived.

ok + I = Ok + wi (7) III. DECISION-DIRECTED ALGORITHMS
where the plus sign denotes modulo-2ir addition of real
varbes ore euivalent rotatio adp itie (couter- The usual way of dealing with phase fluctuations is tovariables or equivalently rotation with positive (counter- design a phase estimator and use the estimated phase, call

clockwise) sense on C. The variable i,, is a modulo-21 i a phase etr n us helest
it 4',. to rotate the received signal as follows:

version of wl.
The conditional density of + t + wk, given #, is y, = xe -4A, k G N + (12)

h( + - ) Since #, + I is a modulo-2r version of Ok + I. The phase corrected signal y. is then fed to a decision

'ThaI is. h(w)= h(-,W). device which, in turn. delivers the symbol estimate ,.
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Typically, the phase estimate *k is functionally dependent , .,
on the old measurements { , -2 , x1- 1) and the past 01./ -K
symbol estimates { , ak- 2, "a. If a carrier or pilot . n,/
tone is transmitted as in typical single sideband (SSB)
systems, then Ok is obtained from a simple phase-locked 0(01 o-

loop (PLL). In suppressed carrier systems such as PSK or n.

QASK systems, the PLL is decision-directed. That is, / is i 0
Without With

updated on the basis of a For instance in [51 (a) (b)
Fig. 4. Geometry of phase jitter and additive noise with and without

k+t = k + , Im [x, de-, phase correction of DDPLL. (a) Without. (b) With.

- Ok + P. sin (arg Xk - arg Ak - k), IV. MAP PHASE AND SYMBOL SEQUENCE
DECODING WITH THE VITERBI ALGORITHM

2(13) The basic idea behind MAP sequence decoding is to find

where the asterisk denotes complex conjugate and ja is a a sequence of phase-symbol pairs {IA, ak)f that, based on
constant that depends on the SNR. The estimator of (13) is the observation sequence {x') , appears most likely. The

called a DDPLL. application of this idea to data communication was firstpropose in [1DndrfnePnL9.ThLos.iele
In the jitter equalizer (JE) of [3] and [41, xk is rotated and proposed in [I] and refined in [91. The most likely se-

scaled as follows: quence, call it {k, ak}, is the sequence that maximizes the
natural logarithm (or any other monotone function) of the

Yk xkGk a posteriori density of (41,. a,)', given the sequence of
observations {x,.}f. Thus we pose the maximization prob-

Gk = Gk-I + A(Gk- --.Vk )X I- (14) lem:

The complex gain Gk is the single complex coefficient of a max In f( {OkA} {a,}x/ {xK1}). (15)
one-coefficient rapidly adaptive equalizer. We may think of (#J }. {a)It
G, /I G, I as the phase correction e -'1'. and I G4 I as a This is equivalent to maximizing the natural logarithm of
gain correction e,. Thus, although there is no explicit the likelihood function f({x} f , {0k0i. (ak,) ). obtained by
formulation of a phase-gain estimation problem in [31 and evaluating the joint density function for (x,)' , (Ok}K. and
t4], the net effect of the JE is to correct phase and normal- {a.}K, at the observed values of (xk)f . Using the results of
ize rapid fading variations. As explained in (41. when phase (10) and (II) we may write
fluctuations are large, the JE performance may be im- A AK

proved by setting a constraint on G, that keeps its value f I {{k}
X A I

inside a given domain including the complex point (0, 1). [KN a) /
N N ,(_ 'l ,. , 0 ) f ( {a ,} ) . ( 16 )

Geometrical Comments ka (

The combined effects of random phase fluctuations and Assuming the (ak ) to be a sequence of independent,

additive noise may be illustrated as in Fig. 4(a). The equally likely symbols, using (8), and neglecting irrelevant

transmitted symbol a, = a") (say) is rotated by the ran- constants, we may write the maximization problem as

dom phase angle 4,, to give akeJ*,. To this is added the max FK
complex noise sample n, to give the measurement X,. I(,,, Iad

defined in (2). For the case illustrated, the resultant mea- I K 12

surement is closer to symbol a(') than to a(01 and conse- rK - 2o - ake" 2

quently, with no phase or phase-gain correction, a decod-
ing error would be made. To emphasize the combined K

effects of phase fluctuation and additive noise, we have + I In I + In f(4-). (17)
illustrated a case for which either phase jitter or additive k=2

noise alone would cause no error. See [I Il for a probabilis- Note that r satisfies the recursion
tic discussion of this issue. Fig. 4(b) is an illustration of rk = k -I + PA, k = 2.3, •
how a DDPLL works. The angle k'k is the noisy measured I
phase (arg x ) minus the sum of the phase of the decoded Pk = 2,X - akei A j + Ing,(o - -),
symbol and the previously estimated phase (arg J, + 'A) .
A given amount iA of this angle is added to o, as a k = 2,3,...
correction to get the new phase estimate Ok +I 0k + I .#e 12
p,'. Note that only phase is corrected. In the JE both 2o + In f(0) (18)

phase and gain are corrected, offering potential for im-
proved performance. This potential is particularly im- where PA is the so-called path-metric. For convenience, let
portant in QASK symbol sets where amplitude errors in x. us make explicit in rK the last phase and symbol:
can result in decodinserrors. rK(4 K, aK). The other arguments (0kf -|, (ak) , re-
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main irplicit. Then, from (18) with {0k) drawn independently from an M-ary equiproba-
Fr(,4K,aK) = FK_(0K_ , aK_ ) ble alphabet 0 = {(l- I)2#r/M)/,. Write the measure-

+PK(XK, a,0, 0K-1). (19) ment model of (2) as

Thus the maximizing sequence-call it (4 kY , (akK )- Xk = e " + n k (21)

passing through (OK- 1 , a- ) on its way to( K, aK), must where the total phase 4 k is represented as
arrive at (O,-_, ,I) along a route ({ k)K- 2 ,d )- 2 ) 4 = S
that maximizes rKI('OK1, dK-). It is this observation k

which forms the basis of forward dynamic programming. O = , = - - Ae, = 6,. (22)
In the actual implementation of a dynamic programming
algorithm, one must discretize the phase space C to a finite It is clear that #k = 1=ig, and k = - ' Thus We
dimensional grid of phase values ''= . The func- =
tion In g1(0k - O- I) is then defined on the two- may replace the MAP sequence estimation problem posed

dimensional grid - × E. However, as discussed in [8] and in (15) by the problem

[9], the resulting m X m matrix of conditional probabilities max f( {xk}K, {1kr, {Ak}' f ) . (23)
has Toeplitz symmetry which means only an m vector of {I1'}, , Ie)
conditional probabilities must be computed and stored. The joint density f f(., in (23) may be written

The Viterbi algorithm for simultaneous phase and sym- K

bol decoding consists simply of an algorithm which de- fK = n- N,(efi, -:),(4k, }/ { k-I, A}k-1
termines survivor phase-symbol sequences terminating at k: I XA ji il

each possible phase-symbol pair. One of these surviving (24)
sequences is ultimately decoded as the approximate MAP where for k =, f( #1 A81  is simply the marginal
phase-symbol sequence. The complexity c of the algorithm density f( , A61). The conditional density on the right-
lies mainly in the evaluation of the mM possible values of densi f (24) Th cnitinaluesity one rig t
I x - ake '

A 1
2 , for each new measurement Xk . Here M is hand side of (24) is easily evaluated with Bayes' rule:

the symboling alphabet size, and m is the number of dis-f(# k Af k/ k 
- I , (a} -

1) kf(p/ }I, (AG } )
crete phase values. For each calculation of I x, - akeihJ' I I' JI jI,

there are six real multiplies. Compared to this multiplica- .f(Aek/ {Pj-'. {AOk-). (25)
tion load of 6mM per sample, the determination and

addition of the m possible values of In g(OkOk -) that Now A~k is independent of the previous data, additive

appear in (18) is negligible. The determination of Ix k - noise and phase fluctuations. Thus

akeloA I2 would likely be computed in a pipelined parallele { }-1 ,Ao} ) / (W-1 -1 (26)
architecture, while the terms In g,(-) would be read by f A Ok / -I M

appropriately addressing read only memory (ROM). When Moreover, if we rewrite 4,k as
short-term phase fluctuations have small amplitude (+ + +
small) so that m must be large for accurate phase tracking, P = Ok- I 

+ Wk + 0k_ I + 0, - I

the complexity increases. For example, with M = 8 and = Ok-1 + AO4 + Wk, (27)
m = 48, c - 384, indicating on the order of 2 X 101 com- we see immediately that
putations at each k-step.

As we show in the next section, the complexity of the f(-/ ,} {A0j}) = k)

Viterbi algorithm can be dramatically reduced by making a I

change of variable and tracking a total phase variable that (28)
is the sum of Ok and the symbol phase, arg ak. Also, of Recall 'k is defined on the circle C. Therefore, for clarity
course, for PSK symbol sets only one symbol amplitude is we might think of 0P as a random variable
admissible, and admissible symbol phases may be chosen #k - I + AO4 + Wk, whose density is folded in [-1r, i).
to fall on one of the discrete phase values. Thus for PSK Putting (24)-(28) together, we have for the joint density fK
symbol sets the complexity is simply m, and the number of K

path metric computations is on the order of 300 form = 48. fK =rf N "eij'"AO)-g1(4 - *k-I - A64)
Even this figure may be reduced by using one of a variety k=M

of so-called M algorithms in which all surviving phase- A8t 81 , *0 A- 0. (29)
symbol pairs are saved, but only a handful of candidate
originator pairs are considered for each survivor 1161-[18]. Principle of Optimality

V. A PRINCIPLE OF OPTIMALITY FOR PHASE-AMPLITUDE Call {t)K, (A A)K the MAP sequences that maximize
CODED SYMBOLS AND AN EFFICIENT Two-STEP fK; (A0k'}t enters only in the g,(") term on the right-hand

DECODING PROCEDURE side of (29). Now let us suppose (as is usual) that g,(w),
which is even, is also unimodal with a peak at w = 0. This

In order to simplify matters and to illustrate the key single-mode assumption for g(') is valid in particular
ideas, let us consider PSK symbols of the form when the phase increment wk in the Markov process (6) has

ak = e ' (20) a Gaussian or Cauchy distribution h(w) (see the Appen-
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Fig. 5. Density functions of phase increment before and after folding.

dix). It follows that fK is maximized by choosing the natural logarithm of 1K, we have the maximization

AO, =[4 - 4- (30) problem

where [xJ denotes the closest value of (1 - 1)21/M to x. max,

By substitution of the constraint (30) into (29) and defining ,.
the "rest" function R(x) on the circle C by rk = rk- 

+ P ,

R(x)= x -[x], (31) I, =- --LIx, - e ' + In g,(R(J,,))

we find that one must maximize

K - ,'-1)). (32) -P'-k IxA - e) + Ing,[R(/i - (37)

The maximization of jK with respect of (ItP)K is formally which is solved by the dynamic programming algorithm

equivalent to maximizing the joint density f((xk}). {,() ) discussed in Section IV. The complexity c' of this algo-

when the total phase 4 k follows a Markov-model similar to rithm lies essentially in the evaluation of the m possible

(6): values of I Xk - eJ'& 12 for each new data value Xk. The m
t= 'i-t + uk. (33) different values of In g1[R(') will be precomputed and

stored in ROM. For each computation of I Xk - •J*, I2
Here the independent increments uk have "probability there are two multiplies, so complexity is simply propor-
density," folded on the circle C, tional to m. This represents a reduction in complexity

greater than M for M-ary PSK.
f(u) = 1gl(R(u)). (34) Usually, the phase is differentially modulated rather

This interpretation is purely formal since f(u) is n than directly modulated, and therefore the relevant symbol

generally a probability density. However, when not is Aik, itself (see (30)). For the purpose of data transmission
there is no need to reconstruct the absolute data phase

g1(u) = 0, lul-> (35) ik = Z A#. This reconstruction has, however, been car-
M ried out in the simulations in order to recover the estimates

then f(u) is a probability density because in that case k = 4 -
6 of the phase fluctuations and to get the

I g 1(R(u)) = gu(u). (36) approximate variance of the phase estimates

d. [ _ . Ok . (39)
Thus (34) can be interpreted as an approximate density K =

when the peak of g(u) is narrower than the minimum
phase distance between the symbols. This condition is Density Functions and Geometrical Comments
always satisfied in communications applications; other- .
wise, phase distortion is so large that data transmission is The entire development of this section has a nice geo-
not possible. Thus we have a pure phase-tracking problem metric interpretation which we illustrate in Fig. 5. In Fig.
as in 181 and [91, and we may proceed accordingly. Taking 5(a) the basic phase noise density h(x) is illustrated on
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(-o0, oo). Fig. 5(b) is the folded version g,(x) of h(x) to where p(A~k/Ak, Ak _ ,) is the conditional probability mass

account for the wrapping on the unit circle C. Fig. 5(c) is function for AOk, given Ak and Ak,. Putting (43) and (44)

the function g,[R(x)] that arises in our discussion of the together, we have as the joint density function to be

principle of optimality, sketched in the case of 4-ary phase maximized
modulation. Fig. 5(d) shows g,[R(x)] wrapped around the K

circle C. Since g,(x) is very narrow, g,[R(x)] is approxi- fK = 1I N.(Ake,, a,)gl(k - 4k-I - A0k)

mately the repeated copy of g,(x) at all possible values of k= I

data phase. With x = ki - !'k-I' Fig. 5(d) illustrates the .p(AGA/AA, AA. 1)p(Ak). (45)

choice of Aek nearest k - k -I (4A# = ff/2 is the best It is important to note in this expression that the N,,(.,-)
choice here), and the resulting value of gl[R(Ok - P-A )] term is dependent only on the measurement model; gl(') is
is shown by the heavy segment on the axis Ok, terminated dependent only on the random phase model, and
by the heavy dot. p(A8 / I-. )p( Ak) is dependent only upon the symboling

We now extend this principle of optimality to phase- constellation (or encoding scheme). Thus (45) is a useful
amplitude encoded symbols. Assume the independent, canonical decomposition that is generally applicable to
equally probable data symbols are complex symbols of the communications problems involving additive independent
form noise and independent increments phase processes.

at = A eJko  (40) For the (4, 4) diagram of Fig. 2(d) we may compute

with the Ak positive real numbers drawn independently P(Aek/AkA_) as follows:

from the alphabet A = (al, a2, ...,L). Denote by p(Ak) P( A/A k a,, Ak 1 = a)
the probability mass function for the random variable A.. 1/4, AOk = ill 3 , #5. 0 7 ,
Assume the ek are drawn from the alphabet B = = i, J even-evenorodd-odd
(#I,, P2," • Denote the conditional probability mass 46, )
function of 0k, given Ak, by p(Ok/Ak). For the (4, 4)

diagram of Fig. 2(d), i, j even-odd or odd-even
A =(v 2 a,, 3a,,3V r2 all 5al) ; It is a straightforward matter to substitute these results into

(45) and derive a path metric as in (37).

4. VI. LINEAR PERFORMANCE RESULTS AND THE

The probabilistic description of the source is SELECTION OF A FIXED LAG

p (Ak) = 1/4, for all A A There is one more simplification to be made: namely, the
selection of a depth constant k0 such that phase-symbol

(1/4, 0k = 0 2 , 04, P6 , 08 pairs may be decoded at a fixed-lag k0, thereby obviating
P0, otherwise the need to store long survivor sequences. Call (0,/K1K the

p (k/A a3 ) 
= P(r/A = a ) MAP phase sequence based on measurements (xk }). The

subscript k/K indicates that 'k//K depends on all measure-
p ) = 1/4, ek = 0 1 03, 0 5, 0 7  ments up to time K. In general the MAP sequence

p 0, otherwise {%/K+ I}+ based on measurements to time (K + 1) may

p(Ok/Ak = a 4 ) = p(Ok/Ak = a2). (41) differ from ({k/K}I at all values of 1 !- k - K. However,
one expects that for large K and for k -K - k0 , the

In place of the maximization problem posed in (23), we sequences { I/K}I and {(piK+ I} will not be very different
write for a well-chosen depth k0 . In other words, long survivor

K, K, ) sequences tend to have one common trunk up to K - ko,
K. max. (A,)" f({} {k I , { } I , IAk}) at which point they may diverge as illustrated in Fig. 6.

(42) Thus we may use 'k./K as a final estimate of 4K.-ko since
wit -P0 ko/K+I - 'P-ko.I for all positive 1. Thus as a practical

with 'A and AA defined as in (22). The density f K(.,"..) matter, one may choose a depth constant k. such that the
appearing in (42) may be written sequence of fixed-lag estimates 4k-k0 /k, k ko + 1, k0 +

K 2,. ", gives an approximate MAP sequence. Here 4 '-k 0/ok
fK 1= I] ,,(A~e11, a,, )  is simply the phase value, k0 samples back, in the MAP

= ( sequence based on measurements up to time k. In this way,

.f(' . ABA, Ak! {i-, {A{k } 1)1 -4) phase values are estimated with delay k0 and only survivor
1 , . sequences of length k0 must be stored.

The conditional density on the right-hand side of (43) is How should ko be chosen? This is a difficult question to

simply answer precisely, because no analytical results exist for the

AI A AA/. ) performance of nonlinear phase trackers of the Viterbi-type.
We can, however, study the filtering behavior of a related

= - ',k- I- A4k)p(Ak/AA, Ak-t)p(Ak) (44) linear problem and find how performance varies with
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of ko = 10 offers all but 1-2dB of the theoretically
achievable gain from infinite delay. In communication

/C"ommon-, Tk ko-4 problems for which random phase is a significant effect,
the ratio 2 is typically in this range. Only at very small
values of g/ can very large delays ko provide large
performance gains, but in this case there is no real phase

0.. fluctuation problem for the purpose of data decoding, and
Oeuv the gain is not worth the large delay. Shown also in Fig. 7
Other Surivers is the Kalman gain K, versus 02/02.

The problem considered in Section IV is admittedly
Fig. 6. Illustration of survivor evolution with common trunk. different from the linear problem considered here. How-

ever, the numerical results given in Fig. 8 for the Viterbi
fixed-lag k0 . To this end, we consider the problem of phase tracker illustrate that the performance gain to be
tracking phase when there is no data symboling. Assume achieved with a fixed-lag of k0 = 10 is much as predicted
{PA) is a normal random walk of the form (6) with by the linear theory. For the results of Fig. 8, the phase
wk : N(O, a2). Let xi = e i ' + nk , {nk) be a sequence of space was discretized to m = 48 values, data transmission

complex random variables whose real and imaginary parts was 8-ary PSK, and the decoding algorithm was the VA.

are i.i.d. N,(0, q2) random variables. A PLL with gain K, The circles, dots, and squares represent experimental phase

for estimating (0A is the following: estimation error variances, and the heavy solid lines repre-
= -, +K i a - , ( sent theoretical results. Over the range of values 0.1 _<

S I+A- I/ sin (arg 'k-1) (47) !5 2, the phase estimator variance for the Viterbi

Note that this is similar to (13) when there is no data. phase tracker operating with delay ko = 10 is essentially
For a,2 4 I we approximate (47) with equivalent to the filtering variance of a Kalman filter that

k = 4k-1 + KI(argx, - k-,)" (48) has access to linear observations and provides estimates
without delay. Performance is not measurably degraded by

When K, is selected to be the presence of data which are concurrently decoded.

K I = ( .2Ion' )[I.5 + 0.5(1 + 4q,?/a)l2 ], (49) VII. SIMULATION RESULTS: GAUSSIAN INCREMENTS

then (48) is the Kalman filter for the "linear observation For all simulation results discussed in this section the
model" phase space [-r, w7) has been discretized to 48 equally

argxk = 'k + nk - Xk = exp[j(Pk + nk)]. (50) spaced phase values and a Viterbi algorithm has been

The steady-state filtering error P0 for this linear problem is programmed to solve the MAP sequence estimation prob-

related to K, as follows: lem. The principle of optimality established in Section V
has been used to derive the appropriate path metric and

o (51) thereby reduce computational complexity. The choice of a

K, 2a. 2fixed-lag decoding (or depth) constant is k0 = 10. Source
A g a rsymbols have been generated independently. The random

A general result due to Hedelin [12] for fixed-lag phase sequence has been governed by the independent
smoothing may be adapted to random walk smoothing increments model of (6) with wk : N(0, a2) and initial phase
from observations of the form (50). The steady-state fixed- uniformly distributed on [-r, tr). Initial phase acquisition
lag smoothing variance Pk. at delay k0 is has been achieved by transmitting a preamble according to

ko one of the following schemes.

Pk/o/O - Po/a2 - G 21  a) During a pretransmission period of length N, the
hI isequence of transmitted data is known to the receiver. Thus

2 (I -2) in the DBVA and VA systems, based upon MAP estima-
= Po/o 2 

- G2(l - Go)! -- 
2
) tion, the Viterbi algorithm works as a pure phase estimator

G = I - K,. (52) during this period. At the end of the preamble, the Viterbi
algorithm is turned into a joint phase-data MAP estimator.

The infinite-lag smoothing variance is In the DDPLL and JE systems, based upon decision-

P P/a. = P0 /a.' -G2(I - G2). (53) directed algorithms, the algorithm is directed by the true
/data during the preamble period.

- In Fig. 7 several error expressions and asymptotic forms b) During the preamble period, identical (but unknown)
are plotted versus ao,/o,, which is a kind of SNR. For data are transmitted. This keeps the phase from making
large 2/o, the error variances P0/o , P,0 /o, and P. /a2 phase jumps associated with symbol changes and makes
go as (o2/a ) . For small oa/a, they go as (a,/a z ) 1/2 the joint phase-data estimator able adequately to acquire
although infinite-lag smoothing offers 6 dB improvement in the initial phase.
v.2/,? over zero-lag smoothing for a fixed smoothing vari- In our simulations the VA has achieved the same data-
ance. Over the range of values 0.01 < 0,2/a.2 - 10, a delay error probability for both methods; i.e., its performance

7,
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Fig, 7. Linear performance results for evaluatin effects of fixed-lag ko.
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has not depended upon which learning procedure was Binary Symbolingused. On the other hand, Ungerboeck's DBVA have provedto be sensitive to the learning procedure. For example, at Shown in Fig. 9 are binary symboling results for the VASNR = 20dB with phase variance u., = 4 o for a learning when , = 0.01 rad2(o, = 57) and SNR ranges from 4period of N = 60 data, the number of errors during a to 10dB. (Recall SNR = l0og,0 1/2o.) The results indi-transmission period of 490 data values has jumped from cate that performnuce with the VA is essentially equivalentseven for procedure a)- known data- to 59 for procedure to that of a fully coherent receiver, even for a relativelyb)-constant but unknown data. Moreover, the DBVA large value of o. For comparison, the curves for coherenttypically requires a longer learning period than does the binary orthogonal and coherent binary antipodal systems

VA (rougly two times loner). A value of N = 50 is are also shown. The simulation reslts for binary orthogo-sufficient for the VA, while the DBVA needs N = 100 nal symboling are interesting because they serve to validatelearning iterations in our simulations. The decision-directed the simulation. Indeed, as expected, the performance of thesystcms(DDPLLand JE) work as the VAin these respects. VA is seen in Fig. 9 to lie between that of an incoherent

That is, a preamble period of 50 data values is sufficient. receiver and that of a fully coheret receive. Of ore theThese data may be unknown t the receiver, provided they margin between coherent and incoheret performance isare kept constant (procedure b)). No degradation with small at SNs of practical interest The simulatio rmtsrespect to procedure a) results, for binary antipodal symboling ae interesting on thei own
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because incoherent reception is not possible with antipodal i toi
symboling. a. IfidS

Eight1-PSK DOPLL

pS DIVA

Shown in Fig. 10 are simulation results for eight-PSK io-' a-a VAwhen SNR ranges from 16-19dB and ( remains 16 CASK-CCITT (4.4)

fixed at 4.4 × 10-3 rad2. This choice of parameters corre- I°- 282o =

10 Is 20 2

sponds to a loop SNR of 23 dB where the PLL is well into stmits linear region of operation and little can be gained from Fig. 12. Symbol error probabilities for 16-QASK.CCIrf symboling
improvements to the phase tracking. The values of o (average phase noise).
under investigation range from 1.60 to 2.20 and the ratio
o o, is very small, ranging from 0.03 to 0.12. The solid 100 ,circles of Fig. 10 correspond to the VA, and the solid '
triangles correspond to the markedly simpler JE. Also - i

shown in Fig. 10 are performane bounds for fully coher-.
ent eigt-PSK and 16-PSK symboling. In this case neither Wo-a

the VA nor the DBVA provides significant improvement
over the JE or DDPLL. The latter two receivers are simpler 0'O-
than the DBVA which, in turn, is simpler than the VA.
Therefore, for such cases of weak phase noise, neither the ,o. S EDO
VA nor the DBVA would be favored over the JE or the @.---e DIVADDPLL. 0 - VA

16 CAK-CCITT (4, 4)

16IAS So: 20 25S 30Shown in Fig. 11-13 are simulation results for 16-QASK SN0 VA

symbols encoded according to the (4,4) CCrI" rule. The Fig. 13. Symbol error probabilities for 16-QASK-CCITr symboling

decoding procedure are JE. DDPLL, DBVA, and VA, for "hig plum aoe)
three distinct values of the ratio o,p/has. Fig. I! is con-
cerned with a weak phasnseno (e6/ = 0.25). Fig. 12 is
concerned with an average phase noise (./t o 01 ), and using a Viterbi algorithm. The DVA that we have simu-
Fig. 13 is concerned with a large phase noise (VA 2/, = 4). lated is somewhat different from Ungerboe's DBVA, in

wwhich the number of possible phase states at each iteration
e ath D A p is limited to six or eight. In our simulation the number of

ephase states is not limited, thus avoiding one poible cause
of errors and improving the error rate, but also incrsasin0

t, in tuor , (54) th computational complexity with respectto[I.

Thereore, for s. c s f a a n

VA~~~~~~~ ~ ~ ~ ~ ~ ~ no h BAwud efvrdoe te. rteDV
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Behavior of DDPLL and JE on CCITT (4, 4) Constellation TABLE I
OBSERVED BURMS

The decision-directed algorithms (DDPLL and JE) have
essentially the same performance, as shown in Figs. 11-13. PE

(Isolated
The DDPLL is superior to the JE by only 0.5 dB. The Error) < 10-4 2.0 x 10-3 1.5 x 102

slight inferiority of the JE is largely compensated by the Percent bursts 0 7 20

fact that the complex gain of the JE can also correct rapid
gain fluctuations in the channel. We emphasize that the
curves of the DDPLL and JE are biased and cannot be threes, and no .rror multiplication occurs since the phase
trusted just as they are because of the occurrences of very estimator is not decision-directed. Thus such MAP se-
large bursts of errors at relatively high error probabilities. quence estimators can be used even at high error probabili-
When such bursts have occurred in the simulation runs, ties on the order of 10-2 or 10-I.
they have been withdrawn from the error rate computation.
For instance, with o2 = 0.2502 and SNR = 17 dB, at an Comparison Between MAP and Decision-Directed Phase
error probability on the order of 10-2, between one fourth Estimators
and one third of the simulation runs (with length 500 data
values) have exhibited bursts of about a hundred errors. In The improvement that can be gained by using any type
the simulations, the bursts began to occur at SNR = 18 dB, of MAP estimator for phase rather than a simple decision-
21.5 dB, and 26 dB for o./o. = 0.25, I, and 4, respec- directed algorithm is again an increasing function of/ .

tively. This corresponds to a value of a,, such that 4o Fig. 1 I shows that only 1 dB is gained by the DBVA and
ranges between 11.50 and 200. The phenomenon of error the VA over the DDPLL if o,2 = 0.25 v2. This gain is
bursts can be explained as follows: because the phase realized at a high computational price. For the phase
increment is Gaussian it will occasionally reach the value fluctuations and additive noise of the same importance
4u,. If, at the same time, the noise is relatively large, the (o,2/o 2 = I), the VA outperforms the DDPLL by 3dB
angle between the observed data and the transmitted sym- (see Fig. 12), but the gain is reduced to 2 dB for the simpler
bol will exceed the value 22.50 that corresponds to the DBVA. For large phase fluctuations, the gain is important.
angular threshold for an error in the 16-point CCITT For instance, Fig. 13 shows that the VA outperforms the
diagram (see Figs. 2(d) and 4(a)). No type of decision- DDPLL by 5 dB when a2/a, 4. In addition, the VA
directed phase estimator can correct such an error. There- brings the insurance that no burst of errors can occur, even
fore, the phase estimate will become incorrect (by a shift of for very poor SNR and large phase fluctuations. In fact,
-450), causing a group of errors. In turn, due to the the true power gain of the VA over a decision-directed
decision-directed nature of the phase estimator, error mul- algorithm is even higher than just claimed if one takes
tiplication occurs, resulting in an error burst. The impor- account of the additional power required in the decision-
tance of the burst phenomenon in the decision-directed directed schemes to ensure against burst as well as random
algorithms can be appreciated from Table 1. The table errors.
gives observed burst frequency in runs of 500 samples,
parameterized by the corresponding observed probability Sensitivity to Imperfect Knowledge of J/o2

of an isolated error. The results are given for a DDPLL, It is easily seen in (18) or (37) that the only parameter
but they are essentially the same for the JE. Moreover, the required in order to proceed with the VA algorithm is the
results are relatively independent of the ratio o /o2 in the ratio of phase variance to additive noise power. The same
range 0.25-4. A decision-directed algorithm is not a relia- holds for the DDPLL whose optimal gain K, depends on
ble phase estimator when the error probability reaches the this ratio (see (49)), and for the JE whose step-size p (see
level of 10 - 2, corresponding to severe transmission chan- (14)) is to be kept close to K,, but smaller, provided the
nels. With respect to burst phenomena, the DDPLL and JE data diagram has unit power. As for the DBVA, it requires
behave similarly. only the knowledge of v.2 in order to determine the number

Constellation m of discretized phase levels. Thus an important feature of
Behavior of DBVA and VA on CCITT (4, 4) oeach system is its sensitivity to an imperfect knowledge of

The performance of the VA is superior to that of the o,2/o. (or o2 ) because, first, o. can vary with time and,
DBVA. The gain achieved by th 7A over the simpler second, the actual phase can fluctuate according to a
DBVA is monotone increasing in the ratio of phase statistical model that is different from the one expected.
fluctuation variance q.2 to additive noise variance a.. While The less sensitive the system is to the knowledge of 0,/0.1

there is no gain when aJ/o, = 0.25, the gain is I dB for (or 0,2), the more robust it is.
v,,/ qo 2 = I and 2 dB for u.2

/
a

.
2 = 4. Both systems perform a) Sensitivity of the Decision-Directed Systems: Let us

better than the DDPLL or JE, the improvement again denote 2 by a. The function K(a) that gives the
being a monotone increasing function of / optimum loop-gain of the DDPLL is sketched in Fig. 14. It

A very important point is that the use of either of the is quite flat except for a very close to zero (e.g., a < 0.2).
two MAP phase estimators precludes the occurrence of Now the case a < I is of no real interest for the purpose
error bursts. The errors seem to be grouped in twos or of this paper. Indeed, it has been seen previously that, in

L . .



MACCHI AND SCIAI: DYNAMIC PkOGRAMMINO ALOORITM 93

-J .9 100
Q.

SNR 20dB

E-0.5- I0"1 4 '

- a 10-11

x~ 0.5 1. 1,5 2.0 .
a vrt/urn, Ratio of Phase
Variance to Noil Variance o.

Fig. 14. Optimum gain-loop of DDPLL. 10-31
0.3 0.6 0.9

,, Step-Size in JE

this case, no MAP phase estimator is worth being worked Fig. 15. Sensitivity of JE to choice of step size p.

out. Moreover, any reasonable phase estimator will per-
form satisfactorily. When a is not negligible, K=(a) is assumed increment density h(w) is the uniform density
slowly varying. For example, K1(l)/K(0.25) = 1.59, and I-
Ki(4)/Ki(l) 1.34. Thus the value KI(l) = 0.62 for the h(w) = -aw<a; 2a2r/16 (55)
DDPLL gain is correct for a large range of values of a. 10, otherwise.
This fact is largely confirmed by the simulations. Hence, The corresponding discrete transition density for use in the
due to the risk of error multiplication that increases very
rapidly with Ki, it should rather be set to the lower bound path metric is

Kl(ami.) corresponding to the smallest a that can be [ 1/3, *, - *D_ -/16,0, /16
expected, rather than to an average value K,(a). which f(u/k ~ - (, ohrie
will sometimes be too large and bring error bursts. Thanks 0, otherwise.
to this precaution, the DDPLL is insensitive to a. It is a (56)
robust system. The resulting VA is related to the class of so-called M

The robustness of the JE is also excellent. This fact was algorithms [161-[181 in which all survivors are saved, but
checked on numerous computer simulations: as a function only M (in this case 3) candidate originator states are
of the step size it, the error probability P(E; it) exhibits a allowed. This significantly reduces calculations and results
minimum which is very flat, as sketched in Fig. 15. The in an algorithm similar in spirit to the DBVA of [1]. Still,
range where the minimum is reached does not depend however, phase is tracked only on i-', vi) rather than on
critically upon a. A value such as # = 0.4 corresponds to (-0 0, 0).
the minimum of error probability for a in the range Source symbols have been generated independently from
[0.25- 11 and for a unit energy data diagram. a four-PSK alphabet and used to differentially encode

b) Sensitivity of the MAP Phase Estimators: The VA phase according to a Gray code. The random phase se-
sensitivity to imperfect knowledge of a has been tested in quence has been generated in ways to be discussed below.
our computer simulations. It appears that the VA perfor-
mance is not appreciably degraded by an error of ± 6 dB Markov Phase with Non-Gaussian Increments
for a. Hence the VA robustness is at least as good as that
of the decision-directed algorithms. Here the phase ts generated according to (6) with h(w)

On the other hand, the DBVA robustness has turned out given by (55). Thus the algorithm is matched to the actual
to be poor. For instance, with SNR = 21 dB and a 4, phase sequence. Shown in Fig. 16 are performance results
the DBVA is supposed to work with m = 2wi/o = 50 for the VA and for the JE. The VA outperforms the JE by
phase levels. If only 45 levels are used, corresponding to a 1.5 dB over the range 10 dB < SNR < 15 dB. The proba-

0.9 dB error for a, then the error probability is increased by bility of error is "probability of bit error."

a factor of two. In fact, as a function of m, P(E; m)
exhibits a minimum, but it is a sharp minimum. This poor Sinusoidal Phase Jitter
robustness can be understood by noting that in the DBVA, Here the phase jitter is sinusoidal (see (4)) with uni-
the path metric is not a function of a = q.,/a,, but only of formly distributed initial phase and frequency ,. The
o,2. This may be one of the main drawbacks of the DBVA. frequency is chosen such that ,A = 1/24, corresponding to

a transmission rate of 4800 bits/s with baud rate I/A =
2400 Hz and jitter frequency r, = 100 Hz. The runs are

PVIO AE JITTER 2000-10,000 steps long, corresponding to 4000-20,000
transmitted bits. The peak-to-peak phase deviation is 200

For all simulation results of this section the phase space or 600. For these experiments the VA outperforms the JE
-,v) has been discretized to 32 equally spaced phase by 1.5-1.7dB. This gain is, of course, achieved at a high

values, and a VA has been programmed to solve (17). The price in complexity.

! !
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,0 DBVA of [I], have been thoroughly investigated by com-
SNR cate that the choice among the four system is to be made

10O II I12 13 94 15 puter simulations, with various data diagrams. They indi-

Fig, 16 Symbol error probabilities for 4-PSK and non-Gaussian phase ccording to for ametem
increments. according to four parameters:

I) the error probability P(E) at which the system is to
Comparison of the JE and VA be used:

In the simulations reported above, the ratio a = 2/o the relative importance a= a,/a of phase fluctua-

ranges from 0.02 to 0.81, that is from small to average ons with respect to additive noise;

values. No burst of errors has ever been observed for the 3) the complexity c that is technologically feasible and
JE. This is due to the fact that the phase increment is acceptable;
always bounded as appears in (4) and also (55). The bound 4) the maximum phase increment A* that is to be
is much smaller than the angular distance between adjacent expected, as compared to the angular distance be-
data. Thus there is no risk of a ±900 slip (corresponding tween points of the data diagram.

to the four-PSK diagram) in the JE phase estimation. Suggestions for this choice are sketched in Tables II and
Hence the errors will be scattered rather than grouped, and III where Table III is concerned with cases 2 and 3 of
no error multiplication phenomenon can happen. Table II.

Owing to this consideration, to the fact that the VA The choice between the two decision-directed phase
outperforms the JE by only 1.5 dB, and to the complexity estimators, JE or DDPLL, is irrelevent for the matters
of the VA, a practical system will implement the JE (or discussed in this paper. It appears in Tables II and III that
DDPLL) rather than the VA (or DBVA), in the case of the VA and DBVA are preferred when a, P(E), and At.n
bounded increment phase jitter, are large. The comparison between these two MAP phase

estimators shows that the VA is more robust, has a smaller
IX. CONCLUSION learning period, and outperforms the DBVA by 2dB or

more when a is at least equal to four.We have derived a principle of optimality for phase- Only Viterbi, or Viterbi-like, algorithms can survive and
amplitude encoded symboling that allows one to simulta- correct error bursts by effectively using the weight of future
neously track random phase and decode data symbols evidence to render such bursts too unlikely to occur. Thus
using the VA derived in [8) and [9). The VA is designed for it seems likely that the VA (really dynamic programmhg)
a random walk phase process, a very severe type of phase will sgow in importa ce in such applications as spread
process. In such a process there exists the possibility of s p ommun ication s a widead
large phase jumps. The VA gives excellent performance spectrum communication where the phase of a wide-band

because it benefits from the use of a lag to observe future carrier can be tracked for symbol decoding.

data samples which make large phase jumps look unlikely.
In order to reach conclusions about the type of phase AmCNowLmoMENT

estimation that should be used for given types of phase
fluctuations, performance comparison of the VA with two The authors wish to thank S. Kerbrat and C. Pariente
imple decimor - directed (zero- lag) phase estimators, for their assistance with software development and atmula-
namely, the JE of [3] and the DDPLL of [5 , and with the tions.
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Aspects of Dynamic Programming in
Signal and Image Processing

LOUIS L. SCHARF, SENIOR MEMBER, IEEE, AND HOWARD ELLIOTT, MEMBER, IEEE

A kstrac- The techniques peculiar to dynamic programming have found tion III we use dynamic programming arguments to rede-
a variety of successful applications in the theory and practice of modern rive the Goertzel and decimation-in-frequency fast Fourier
control. Successes in the theory and practice of signal and image process- transform (FFT) algorithms for efficiently computing the
ing w le s numerous and prominent, but they do exist. In this paper, we discrete Fourier transform (DFT). In Section IV, we dis-
saund a cog for renewed attention to the potential of dynamic programming

for solving knotty nonlinear filtering problems in signal and ima process cuss the connections between control, detection, estima-
ing, and oudine successes we have recently enjoyed in nonlinear frequency tion, and prediction of autoregressive sequences observed
tracking and random boundary estimation in noisy black And white images. in additive noise. We highlight the central role played by
Two classical results, the fast Fourier transform and Levinson's recursion the so-called normal equations and rederive the Levinson
for determining autoregressive parameters, are treated in the context of

dynamic programming simply to reinforce the point that many of the algorithm for recursively solving them in the order of p 2

algorithms we take for granted, and which were derived without recourse to operations. The derivation is a dynamic programming one.

dynamic programming. can be nicely interpreted as dynamic programming The new results follow in Sections V and VI. In Section
algrithms V, a dynamic programming algorithm for tracking the

frequency of a frequency modulated sequence in additive

I. INTRODUCTION noise is derived. Several simulations illustrate the perfor-
mance of the algorithm. This provides a solution to a

N TIllS PAPER it is our aim to show that dynamic classical nonlinear filtering problem. The results of Section
programming, a fundamental technique in control theory VI show how dynamic programming may be used to derive

since Bellman's introduction and advocacy of it in the a new algorithm for estimating local segments of object

mid-1950's, can be of considerably more value in signal boundaries in noisy black-and-white images. Some exam-

and image processing than has generally been recognized. pies are given to illustrate the use of the algorithm in

This is not to say others have failed to recognize the estimating complete object boundaries as well.
potential of dynamic programming for solving interesting
signal processing problems. We mention in particular Cox's 11. A DYNAMIC PROGRAMMING FORMALISM

early work [II, f2] on Kalman filtering and dynamic pro-
gramming for the estimation of state variables and the Traditionally, dynamic programming has been used to
identification of system parameters; Viterbi's dynamic pro- find "optimu'n" solutions to multistage decision problems
gramming algorithm for decoding convolutional code se- [61 [7]. An "optimum" solution has generally been one that
quences 131 Cahn's dynamic programming algorithm for maximizes or minimizes a performance or cost functional.
FM demodulation [41; and Forney's discussion of inference When the multi-stage decision problem is cast in a prob-
problems on finite-state Markov sequences that can be abilistic framework and the criterion of optimality is maxi-

solved with the techniques of dynamic programming [5]. mum a posteriori (MAP) probability, then the cost func-
In the sections to follow we rederive classical algorithms tional is typically a multivariable likelihood function or

in discrete Fourier analysis and linear prediction using the some monotone function of it.
principle of dynamic programming. We then present two The following is a formalism that is rich enough to

new dynamic programming algorithms. One is for nonlin- embrace most of the "signal-in-noise" problems encoun-
ear frequency tracking and the other is for edge detection tered in signal and image processing. Let {xJ)_m denote a
in noisy black and white images. process with state variable representation

The organization is as follows. In Section I!, we present
an elementary dynamic programming formalism. In Sec- Xk41=fA(X/, U,)

Manuscript received April 13. 1981. This work was supportcd inpart Yk =gk(XA). (I)
hy the Army. Research Office. Research Triangle Park, NC, under o-

tract DAA(G29-79-C-0176 and by the Office of Naval Research. Statistics
and Probability Branch. Arlington. VA under Contract N00014-75-C-05 18. Here f4 and g may be random functions; the sequence
A preliminary version of this work was presented in an invited session on
Sigal Processing and Control Interactions at the Thiteenth Amon (ut) is a parameter, decision, or control sequence that may
Asilomar Conference on Circuits, Systems and Computers, Asilomar, CA, be functionally dependent on the measurement sequence
November 5-7. 1979.

The authors are with the Department of Electrical Enginecrini. Col- (yA}. The range spaces for the state xk, the parameter U.,
orado State University, Fort Collins, CO 80523 and the measurement Ya are X, U, Y. respectively. These

0018-9286/81/1000-101800.75 e1981 IEEE



SCHARF AND ELLIOTT: SIGNAL AND IMAGE PROCESSING 1019'

mentable on a digital computer. When they are uncounta-
ble, but the function I is quadratic, then it is still often
possible to find a closed-form recursive solution that may/ be programmed.

L4, 5 A very large class of problems may be formulated as
before. Two particularly noteworthy examples are the fin-

C(.), C4 ear discrete-time quadratic regulator problem in determin-

k 2,3 istic and stochastic control, and Markov chain sequence
k( 1, 6 is estimation in additive noise. On the other hand, there are a
j * ,great number of problems that admit dynamic program-

{0, I. 2,... }: States ming solutions, but which are not naturally formulated in\ ( " Characters the style above.
One of the points we wish to make is the following:

t') Cm recognizing that a solution is a limit of a sequence of
approximants which may be recursively computed is per-
haps more fundamental than the search for a correspond-

Fig. I. States and characters. ing optimization problem. The chief value of an optimiza-
spaces may be finite, countable, or noncountable. When tion formulation is that it often simplifies the search for the

recursive solution algorithm.
the spaces X and U are countable then their respective
elements may be placed in one-to-one correspondence with
the integers and the formalism of Markov chain theory III. DYNAMIC PROGRAMMING, THE DFT, AND THE

may be mined. Even though the states of X may be chosen FFT
abstractly and appear uninteresting, the mapping gk may
be chosen so that the signal component of g() generates The DFT certainly constitutes one of the cornerstones of
characters or observations Ck that are of great interest. The modern Fourier analysis. Its uses range over the entire
idea is simply to let a Markov chain, say on the integers spectrum (so to speak) of signal processing applications.
0, 1,2,.., control the dynamical state of the problem and The DFT is a mapping, DFT: (x. ' - -. { X} N - , that
reserve the role of character or observation generation for takes the sequence {x.}0 - ' into the sequence { X,})-
the observation mechanism g,('). This point is illustrated according to the rule
in Fig. I where the generated characters can be almost
anything: contours, sequences, images, etc. N- 1

Consider a finite version of the process (Xk}X_ : Xm = x.WN", m:= O,- ,. N- I
k=OX N = (xo,xI " '" ,. )

=F ( X ,U- I) W, =exp(-j2lr/N). (6)

UN = (Uo," ,UV) Noting that WmN= 1, Vm, we may write X,, as follows:
YN (yO, y,,'. "YN). (2) N-1

X. = I X. WN "( - ").  (7)

Typically, one wants to maximize a performance criterion n=O

IN( XN,UN, YN) (3) This calculation may be viewed as the limit of the follow-
ing sequence of imbedded approximations:

with respect to U, subject to constraints CN( XN, UN) = 0. i

Call I'( XNUN, YN) the maximum. When I' obeys a recur- = W k= l,2,. . ,N. (8)
sion of the form nk

n=0

iN N yV =NJ- I ( N'V 1-Jl y

IN( XN, U, YN)- XNI, _ WY) Note X, ) =obeys the following recursion:

+PN(xN,"uoNyN) (4)

then dynamic programming comes to the fore and the
solution UN' may be generated recursively as the limit of X.N) = Xm
the following sequence of solutions: X0) X0 WW -. (9)

So X,. is obtained as the limit of a sequence of approxima-
The functional S describes the recursion for computing tions that begins at V." =xoWN" and terminates at X,(.N)

U. Thus the central theme is to imbed the solution to an = X,. This is the so-called Goertzel algorithm 18 for
N stage problem in a sequence of simpler n stage problems. obtaiing the mth DFT variable X,, as the output of a
When the underlying state and parameter spaces are finite, digital ilter excited by the sequence {x.)'. The output
the solution algorithm is finite-dimensional and imple- of the filter is read at time k = N (set Fig. 2).

L I ,, . . . I " 1 i... . . ... .. . . . .ir I L ,'. .... . ... ..
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Fi or-e ite - F co poTn -' J yz
-DFT a

Fig. 2. 3 roertzel filter car DnT componentl X. F

Dynamic Programming and the Decimation-in-Frequency Fig. 3. Four-point decimation-in-frequency FFT.

FFT sive time series. The usual state-variable and matrix block
diagrams give way to scalar variables and digital filter

The Goertze algorithm is a nice dynamic programming- blocks of moving average filters. The normal equations are
like solution for the DFT. However, it is not efficient highlighted and dynamic programming is used to derive
Computational complexity is of order N2 . Let us see if we the famous Levinson recursions.
can improve upon it. Consider X.k) for ciia frequency
indices m=2r: A. Models

&I

= xW, 2I-), k=l.2...,N Let (xk) denote a scalar zero-mean wide-sense sta-
0o tionary AR sequence of order p (denoted AR(p)) that
I obeys the recursion

= x,,W. rn ), k- 1,2.. ,N. (10) p
" 0 Xk=X a.Xk-l+W, V/k.

For k even (say k =2s).
w.: sequence of'i.i.d. N(0, o,) random variables (r.v.s.).'2'

2= X w r(2s -n) (12)

n 0 It is easy to see that the covariance sequence {r,.}_,
I 2s-I r,=r_,, associated with the sequence {Xk} obeys the

X.-2 2 recursion
n 0 n ,

PS - i o .ns, , 1 (13)W XrWs,-n) + I x +,WN/lr) -) r,. , anrn+a, ,•
n 0 I :0

W 1 _ vty (11) From here one may write out the so-called normal equa-
,V2 "2r- 2r •tions:

This shows that the two s-point DFT approximant X2(2') Rpa =r
may he obtained from two s-point approximants. By r r, *..

choosing s=N1/2 and continuing backwards in this way r , r. rp-2
(for odd subindices, as well) one arrives at a backward rr-
dynamic programming derivation of the decimation-in-
frequency FFT See Fig. 3 for an elementary representation "
of a four-point decimation in frequency FFT. The decima-

tion-in-frequency algorithm improves on the Goertzel algo- a; = (a,,- • ,ap)
rithm by requiring complexity on order Nlog N. r, = (r,. . ,r). (14)

IV. DETECTION. ESTIMATION, AND CONTROL IN THE We note at this juncture that turning r upside down
AR( N) CASE: KALMAN FILTERS. LEVINSON turns the solution to the normal equations upside down. To

RECURSIONS. AND DYNAMIC PROGRAMMING see this, let

Autoregressive (AR) models for signals, states, and data 0 0 ... 0 1
play a starring role in many areas of signal processing and 0 I 0
control. By appropriately selecting model parameters (and J= ", " JJ=I (15)
order) one can model the covariance structure and spectral 0
characteristics of more general models. The so-called nor- I .. 0 0
mal equations for identifying AR parameters are elegant
and easily solved with recursions of the Levinson type. denote the exchange matrix and note by the Toeplitz

In this section we tie up control, prediction, detection, symmetry of Rp we have JRJ = R,. Thus
and estimation in the special case where we are dealing 'Here and elsewhere i.i.d. stands for independent, identically dis-
with a zero-mean wide-sense stationary. scalar autoregres- tributed and r.v. stands for random variable.

iw~
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JR Ja =r Use (20) in (22) to get a different recursion for QP rp):

RpJa, =Jrp (16) Q(rp)=min aro-2aprp +ro-(r,-n-aprp

As J turns vectors upside down, this proves the claim. •R1 1(r p- I -

B. The Normal Equations are Fundamental = min [a2(r o - r,_ JR;!jJr_,
apI

The AR coefficients a; =(a,.. ,ap) that characterize
the sequence {xA} are fundamental to the implementation -2P_(-i 1R721Jre_ +PQ4(r_ _ )
of control, prediction, and detection algorithms on noisily = rrin [a(r o  aP-,'r_
observed AR sequences. Unfortunately, sequences rarely aip P P P

come tagged with their corresponding AR parameters. -2ap(r -aP- ,jr-  )+Q_ (r). (23)
More typically finite records of them come to use and we P _)
estimate a covariance function (or power spectrum), often It follows easily that the minimizing value of a, is
by FFT-ing, squaring and windowing, and inverse FFT-ing.
These estimates may then be used to solve for the coeffi- r, -aP_Jr m
cients a, from the normal equations. This makes the nor- ap , . (24)PP ro -a P rp (24)mal equations fundamental and arouses our inerest in 0qui-v-an-lI

efficient ways of solving them. The derivation that follows Equivalently,
is an adaptation of Bellman's discussion of quadratic forms (a")2(ro-a4r )=aP(r,, -a-,'Jrj. (25)
and dynamic programming in [9]. - -) - .

Substituting the solution of (24) into (23) we get the
C. Dynamic Programming and Levinson's Algorithm following recursion for QP(r ):

Consider the quadratic form QP( r)=Q4('(, r )-a (r-aPjr _ I
Q (rP)= ro- 2a'erP+ a;RPae (17) =Q p_ (r _ ) (ap) (r - , P _ r_-). (26)

This quadratic form is minimized for some choice of a, Comparing this with (20). we have

that we denote apP. It is easy to see that
ap' ae  (18) ap'rp=ap 1'r ,+aP(r -a:,'Jr ,) (27)

where ap comes from the normal equation: from whence, it follows that

ap =Ren,. (19) a'=(a-r-aPaf J.a;). (28)

The corresponding minimum of Qp(r) we denote Q((r): This is the recursion for updating a;.
This completes the Levinson recursions, summarized as

o aPr e  follows:

Tr -r;Rr rr. (20) (i) a,- re - a- VrP 0

The quadratic form Qp(.) may be written recursively as ro  ap "r,

Q,(r)=alro-2aerp+Qp-,(r-n-opJr 1). (21) (ii)P P~'( : '  a - '1u  * , ep ,

(Nii QP(r) = QP-,(r p _ , ) ( a p ) '( ro - a p " / r

So minimization of Q,(r) with respect to a. may be Q P - (
written (29)
Q(iar , minQp(re) There are no matrix inverses here-only vector inner prod-

ucts. Thus the algorithm is 0(p 2). Of course. aP is the
miar- -2arp + minQP, I( r , -aeJr desired solution ae

To show the importance of the AR coefficients a, =a,.
= main [a~ro - 2ar +Q7 ( ,-aeJr e , )]. we consider the following family of problems:

(i) noisy pr.xliction
(22) (ii) noise-free prediction

(iii) minimum variance control
This equation contains the essence of dynamic programming (iv) detection.
and the principle of optimality: once the solution a -, and

pcorresponding minimum Qe-,'. have been found for the D. Noisy Prediction and the Kalman Predictor
order (p- I) problem, aP may be found as a function of r0,
r., and aP-,. At each step of the way the minimization on Assume the sequence {xk) is observed in zero-mean
ap is quadratic. additive white Gaussian noise (WGN):
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Wk /(Close for Control

I-to, ra-+~+ ~ (4

k-p+ +
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[apapk .thknobraio s-feqne mvin avrae (Aprelicto filter, uaion

nk:~th residual seuec i~kd =(O a ) rado isibls now) weirte wit a
feeforar MA ilter, i Qi~k)XI gi (34

MA? Theaio answe isat thatl (zis os erinonA

Xk + = A X +K k+ I or) E. Th os-rerdco

Xk-A (32
wethe reficionetor g, cnsis bf the e r ers

* .,k(,J' (33 E(xu/z1,a 2 ,.. (36)

The~ A Kama preicio seqenc 4~ for fo block diga can When prdctr N=0, thnhat& n
be~ ~ inepee as --- the ontputeffaneA moving average (MA).,/kM predictor filter,/xkz

(ARMA)fedorar fite filter p~)=P poe n p eos(eoe
ARMA( ~ c p.1 ph -is),divnb the niyKla predictio ror seqenc and," (38)

(v~=z -&1or n RM( . p I fltr divn y hesoinatl a h procsoedicin vecor, pisfrneeqain
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Xk-p+ I E(wkvkjVk)=0, it is clear that E(x 2 ) is minimized by
X k - p + 2 

c h o o s in g is ia

1k (39) a,xk ,. (44)
L k/- JThis control is illustrated in Fig. 4 as a feedback loop

It follows that P. the covariance El[Xk -, k - k]' is running up the left side of the figure. The feedback loop tothe top "compute" box shows how !k would be used for
0 ... 0 minimum variance control in the noisy case.

P= (40) G. De "ction and the Likelihood Ratio0

• . 0 o,2 Consider the hypothesis test H, versus H, with

Calculating K by substituting (40) into (33), we find that H0: Zk = nk , k=O, I,. •., K
A(X)=XN and hence g, =a,. This implies, as one would HI: zk =xk +n , k=O. I....,K (45)
expect, that the prediction filter of (35) reduces to the
purely MA relation: and the data assumed stationary over the interval. This test

P is equivalent to the test Ho versus /i, where
k+ I= I a,zk+,-,. (41) Hf,: P(°) =z, : N(O, a).

i,: 54'": N(O, po +, 2 ); po: variance of 1,
F. Minimum Variance Control (46)

One of the simplest control strategies is minimum vari- and PI
) =zk - Xk is the innovations sequence in the Kal-

ance regulation where one desires to minimize the variance man filter. The log-likelihood ratio for this problem is
of the AR(p) output sequence {xk), and force E(x,)=O. proportional to
The well known separation principle allows one to generate
a feedback control strategy assuming noise free measure- LR=K- i K 2 + K

LRK 2 2P, IZ2. (47)ments, i.e., n, =0, and then use the same strategy in the P0 +'7,o 0 ko.

noisy case but with the Kalman filter estimates {k) re- T
placing the actual filter outputs {Xk). Thus the statistics k.', and z are sufficient and the

Assume then we have the system log-likelihood ratio may be computed as in Fig. 4.

p
x=. a,xk- i +W k +Vk (42) V. FREQUENCY TRACKING AND DYNAMIC

I PROGRAMMING

where {Vk) is our feedback control sequence. We would Phase and frequency tracking problems comprise some
like to minimize of the most nettlesome nonlinear filtering problems in the

P 2 entire realm of signal processing. Nonlinear filtering and
E(X2 )=E a +k ) MAP solutions have been reported recently by Bucy and

_ax +k Mallinckrodt [I 1], Ungerboeck [121, Tufts 113]. Scharf et al.
[141, [15], and Wolcin [161. A typical problem is the follow-

-E (wz +2 wvA +2wA (: a,x,, ing: observe the signal-plus-noise sequence {zA) with

Zk =sk +fnk; nk: sequence of i.i.d. N(0, o,)

p )2 random variables.
+Vk + I. aiXk), S, =e *A (48)

and estimate the phase sequence {0k) or some underlying=E(wk2 + 2 E( E(w k Vk )k ) function of it. Here the character assigned to state A. is

) sk =exp(jOk).
+2E axk, In all that follows it will be convenient to organize the

Wk observed data into contiguous data blocks:

= Z= 't -s +nt
+iE {} + ated(43) ] Z

Since (wk) is uncorrelated with (xk 1 l, and since I.
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2w(Q- IQ- linear rate for the nex t N samples. Therefore, we may write
s, as follows:

wt VS. k

s, =exp(j-0N )d(w,)

........ ... 3..

2Wi .. . d(,)= . (53)

0-

024 N-1 2N-I 3N-I 4N-I exp J (N- l),

s1 sThe phase '0iN is the total accumulated phase after tN steps.
It depends on the entire history of frequency terms

P0, I. 1 " - I and obeys the recursion

,',,N "(r- I)N

Between iN and (t+ I)N- I the phase grows linearly as

S94 $2 21r

=9 vN + (i- [i]N v,.

F.Visualizing tf trajectories. This additional phase increase is accounted for in the

vector d(v,). See Fig. 5 for an illustration.

To complete the model we assume {,,) is a sequence ofs 1 [n discrete random variables that take values in the set

' S " n, = ): (49) (0.,... ,Q- I) and evolve according to the rule

S(J [ :'!(-+ ')N I I, =I, I u, (54)

Think of the (NKX 1) vector Z as a concatenation of K where u, E (0, 1,. • .Q- I) and addition is modulo-Q. The

data blocks of the form z,, each of dimension N. distribution of the sequence of i.i.d. random variables is
The choice of a model for A, deterni nes whether we are selected in such a way that the transition probability

talking about phase or frequency tracking, although the P(P/P- 1 (55)
distinction between the two is more imagined than real. In
1141 the phase was assumed to evolve according to a corresponds to our notion of physical reality. We may
random walk phase model think of the resulting frequency sequence {o) as a finite-

OA = 5 
+ wk state random walk on the circle with an unusual transition

probability structure. Typical trajectories for {Wk} and

%: sequence of i.i.d. N(0. o ) random variables (50) (s} are illustrated in Fig. 5.

The joint likelihood function for Z and (v,) is propor-and a complete dynamic programming solution was pre- tional to

sented. In 1151 a discontinuous-phase FM model was as-

sumed and a dynamic program algorithm derived. K -1 p (56)
Here we assume 0, evolves according to the continuous- I -iz, - Inp(-'- . (56)

phase FM rule 1=0 . t=O

OAk , +Wk (51) Using our representation for s, and dropping terms inde-

where2  pendent of P, we obtain

21r K--I K-I
60k Q t -2o,=o r= ReOexp(-f )z~d*(P,)}+ I Inp -

2w
= -- v,, tN<k<(t+ I)N. (52) (57)

The term zd*( ) is nothing more than the DFT of z,
In this way w, is fixed at the value (2/Q)s, for a block of evaluated at the DFT frequency (2w/Q)i,. The best way to

N as illustrated in Fig. 5. Correspondingly, 4,, increases at Compute it is to zero-pad z, to obtain a Q point sequence
a fixed linear rate for N samples and then adopts a new t

that may be FFT'ed. See Fig. 6.
lldenote% integer part of ()Our notion of the most likely sequence (P,)'- ' is the
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(frequency state)

0 UT i - O.

_ l x xlFFT

.. x FFT

" '"OO"FFT

Fig. 6. Data processing and frequency trellis illustrating evolution of surviving frequency tracks.

sequence that maximizes 1. This is the MAP sequence. with I (peak), 2 (secondary peak), and 3 (tertiary peak) are
Write the maximization problem as unreliable the estimated frequency sequence (thin line)

tracks the true frequency sequence (thick line).
max I (58) This formulation improves on a heuristic idea of Rock-

0 more, who was perhaps the first to advocate dynamic
with programming search for likely frequency tracks [17].

r, =r,I + aRe{exp(-j )z;d*(f,)}+In pi,_ I VI. LOCAL BOUNDARY ESTIMATION IN Noisy

BLACK AND WHITE IMAGES
(59)

In digital image processing one is interested in develop-
So our maximization problem becomes ing computer algorithms which can either automatically

r (extract information from pictures or at least simplify the
max max K 2 + In p PK--- process of manually interpreting them. In either case, a

', rrK-2 K 2 basic step ,nvolves segmenting a picture into regions with

1 similar features such as gray level or texture. This involves
+_ Reexp(-jAK ,m)Z(' - *(P(K-1)) (60) the estimation of region boundaries. Boundary estimation

2a.2 1 algorithms make use of operators which estimate short
Thus for each node on Fig. 6 we evaluate the FFT zd*(P,), segments of boundaries using picture data in small picture
phase it by exp(-j m), and find the best route through sections. Examples are simple gradient operators and the
the trellis with the dynamic programming algorithm of well-known Hueckel operator [18]. An example of a local
(61). This completes our algorithm for moderating the sequential estimator which is also used for this purpose can
usual peak-picking rule on the FFT with prior information be found in [19]. In this section we outline a new dynamic

P('1,/'- ). The reader is referred to [14] for a more corn- programming algorithm for sequentially estimating short

plete discussion of a related algorithm for nonlinear phase boundary segments. We then briefly discuss an algorithm
tracking. which pieces together the short segments and present some

Shown in Figs. 7 and 8 are simulations of the algorithm examples of its use on complete images.
running on noisy phase-coherent FM data. The parameters A. Image and Boundary Models
are

u,: folded normal r.v. of [141 Let a digitized black and white image be represented by
a matrix with components g,, corresponding to the gray

variance (2u,) 0.01, Fig. 7 Q=32 level value of a picture element (pixel) centered at position
i Q' 10.1, Fig. 8' (ij). The value g,, will have two components- a true

I picture component b, and a noise component n,, so that
CNR=10loglo0-o 3dB 9, =b, +n, . A picture is assumed to consist of a single

region of gray level r,. lying in a background of gray level

(61) r.,,. so that b,, can take on either of the two values rim or
rot. The noise components n,, are assumed to be indepen-

where CNR is the carrier-to-noise ratio. dent identically distributed Gaussian random variables with
The algorithm is run in a fixed lag mode [14] for a lag of mean zero and variance a', denoted n,,: N(O,a 2 ).

60. The results show that even when FFT peaks, indicated An edge element is defined as the line segment eparat-
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CONTINUOUS PHASE RANDOM WALK FM
MAP FREQUENCY ESTIMATION

LAG= 10 BLOCKS -DECODED FRED.
R. WALK VAR. =0.01000 -ACTUAL FREO.
CNR = -3.0 NORMAL DENSITY

N.O )-(8 .32)

--- --- - +- . . 3 A .. . . . . . .. . . . . . . . . . . . .
S - 3 ... I

I A 2
- .. .. 1 . . .. .. . I 2 .

a . . . . 2 Q .. . . 2 .

10 32. 2 -3
2 J

i - 2 C 0
T I M E . .. . ... . ..

CN -30NOMLDEST

SN . ... .B .21

222

-------------- ....

.... ..2 ... L . . . . .. .. .

>._~ ~ ...... . . ..

2 .. .. . . .. .... . . . .

. ... ...... . .. .. . . .. . .. . .

2~j .. .. im . . . ... . - ---- - -2 . ... ..

9 _ . ..00 .1;,. -. 3R0 V .00- 8.* 03 5.00 . 00

TIME 16Lc 1. -

Fig. 8. Frequency tracking at CNR= -3.0 dB. Random walk variance=0.0I rad2.

LAG= 10! BLOCKS.DE.ODED .F.E.

FCg. Frruect a ecN ofnom L DENSITYian qe s de
, ( N.0 J=(8 .32)

- T- , -... " -+ - - .

•.2 2I 3 . . .. 2

-- - -

gul3. b L sequences o g....... I - . . sh.w

,2 . ... 3• . . . u

" ~ I L.( .......OI_

(:)' sils rat.d in 00Fig .10 0w assume shot .ounar kx(2k -2) pixels. Th key0 consrain bultio0 ti g r

selgmentstbegnedy constructingdircta sequence of ating cemenitsthansequecesdpativoe rectangles t  kg o #

edge elements that terminate at the boundary or a rectan- cannot re-enter it. Fig. 11(a)lgives an exampleof aboundary]
gular box. Longer sequences of edge elements defining which is consitent with this model while Fig. I1i(b)shw
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j j+1 j+2 j+3 J+4 1+5 x x

X11 ~x7 Ix: Inx 1
to X T 4 xe X:

.3 XiiY.XI

-+ ------t x X 4 X 1 X 2s  X's X IS

i+ 
13 X

i+4 
X;/ X4 X1 X9,/X4

i 5i

SoFig."f 1 Sttn Fig. r3. Possible state locations xo 1,2 , • . gt,5.
Fig. 9. A boundary segment in small picture segment.

es

whrkteide aamtrk o terctnl o ie k

SR,

k 2s/ k- 4C

k-4 k-

R 4  k-1

k 5Fig. 14. State transition diagram for k=1,2..--.5 illustrating a set of ,

aracters C,, k= 1,2,-.,5 for a specific process realization x , k=

Fig. I 0. Example of boundary segment generation. priori and is a functiome of the boundary curvature proper-
ties for the region of interest.
Boundary segments generated by such a model are natu-
trally represented oy a sequence of states in a Markov chain

where the index parameter k for the ith he ge ep, is
also the index parameter for the Markov process. A process

Fig. A. Example of a boundary. (a) Consistent with model. (b) Incon. state Xk at "time k, will correspond geometrically to the
sistent with model end point of a boundary sequence passing out of R.. Fig.

13 shows all possible locations for Xk, denoted as xt when
k = t, 2,-.,5. The number of possible states at time k isSfor k=1, 3 fork=2, and 9+4(k-3) for k>3.

Note that there is only one edge sequence between any
two states Xth r I and x which is consistent with the genera-
tion model and which does not pass through another state
Xa. As a result, a boundary segment (tj} is uniquely
characterized by a state sequence (Xe ' I nFig. 14 contains an abstract representation of a typical
realization of the Markov process, together with a descrip-

tion of the picture or character C associated with eachstate. The observed image will be a noise corrupted version
of each such picture.

Fig. 12. CAT scan of abdominal Section of human body. If the regions of interest have smooth, low curvature
boundaries then a reasonable rule for assigning transition

a similar but inconsistent boundary. In the latter case the probabilities p(xllxk,_) is to choose p(x, lx,_ to be
edge sequence reeters R 4 . Although this scheme restrict$ inversely related to the distance (measured in edge ele-
somewhat the types of boundary segments that can be Menu) between states x,_ -IAnd xt .We must aio impose

generated, it is still very reasonable for region boundaries the total probability constraint that
with low and slowly varying curvatures such as those in the 9+4(k-3)
body computerized axial tombgraphy (CAT) scan shown m I p(xx 5,%_)=i. (62)
Fig. 12. The maximunfi rectangle size pN is assumed fixed a J I
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B. A Dynamic Programming Algorithm for Estimating
Boundary Segments

Using the pixel data in an NX2(N-l) block, RNI we
next formulate a dynamic programming algorithm for
estimating the most likely state sequence consistent with
the generation model. The algorithm is optimal in the sense
that it finds the state sequence that maximizes the joint
likelihood of the data in RN and the corresponding edge
sequence through RN.

To begin we first define the pixel data sets (a)

D, = (g,,: pixel (i, j)CRA}

dk = {g,,: pixel (i, j)CR, pixel (i, j)e:RkI}.

This implies that Dk =Dk -I Udk, D, =empty set. This
recursion is essential. Next let l(.) denote a log-likelihood
function, and SA, ={x,) denote a boundary state se-
quence of length N. Then l( DN, SN), the joint log-likelihood
of a boundar, L dtC sequence and the picture data, must
satisfy

l(DN,SN )=l(DNISN )+l(SN) (63)

where i(SN) is the log-likelihood of the state sequence SN (b)
and l( DN SN) is the pixel data log-likelihood conditioned
on the boundary {t,}" described by SN. Since the state
sequence SN is a Markov chain we can use

I( SN) =I(SN - )+ In p(xX Ix_)

I(S,) =(x,)=ln P,(x,) (64)

where P,(x,) is the probability of a particular starting state
x,. Since boundary edge sequences are prohibited from
reentering rectangles they have already passed out of, we
can express

I(DNISN)=I(DNIISN_,)+(dNIxN) (65) c)

where l(dN IXN) is the log-likelihood of the data added in Fit 15. Examples of algorithm performance on complete objects. (a)
llipse with additive Gaussian noise such that (ri, - r,)/o = 1. (b)

extending the state sequence SN - to SN conditioned on Lung section of human body, CAT scan. (c) Satellite image of a storm

the specific new state XN. Substitution of (65) and (64) into cloud.

(63) leads to the following recursive expression for l(dk k)= ] InfG(g,-r 1n)
l(DN, SNv ):

(DN. SN)1(DN - SN-)+In p(xNIXN-I)+(dNIXN)" + I In f/(g,1 -ro)

(66) (,,-)cmA )2 (gj _r r)2
The transition probabilities p(Xk IXk - ) can be calculated =C- -(g, - ri our
using a distance rule such as the one discussed above, while 2a 2 2a

incremental data log-likelihoods, l(dk lxk) can be calcu- (i. j) E a (i.j)EIM

lated by observing that the pixel gray level values gj are
N(ri., a2) if g,j lies inside the region and N(rout, a

2 ) when where C is a constant which is independent of the choice of
gu lies outside the region. Furthermore, once Xk has been xk, and
specified, all pixel values g,, in dk can be associated with
pixels either inside of or outside of the region. Hence if we !,k = {(i, j): pixel (i, j) is in region and g, Edt )
define

!tk = {(i, j): pixel (i, j) is in bacond and g eEdt}.
flX)2 exp(_X2/202 )  (67)

(x) 2 2epFinally, a dynamic programming algorithm for estimat-

ing a state sequence SN and hence a boundary edge se-
we can use quence (t}," which maximizes I(DN, SN) can be derived by
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APPENDIX B Progress Reports and Miscellaneous Documents



PROGRESS REPORT

(TWENTY COPIES REQUIRED)

1. ARO PROPOSAL NUMBER: DRXRO-PR P-16437-EL

2. PERIOD COVERED BY REPORT: 1 September 1979 thru 31 December 1979

3. TITLE OF PROPOSAL: Viterbi Tracking of Randomly Phase

Modulated Data

4. CONTRACT OR GRANT NUMBER: DAAG29-79-C-0176

5. NAME OF INSTITUTION: Colorado State University

6. AUTHOR(S) OF REPORT: Louis L. Scharf

7. LIST OF MANUSCRIPTS SUBMITTED OR PUBLISHED UNDER ARO SPONSORSHIP
DURING THIS PERIOD, INCLUDING JOURNAL REFERENCES:

A. L. L. Scharf and H. Elliott, "A Random Sampler of Dynamic Programming
Applications in Signal Processing and Control," 13th Annual Asilomar
Conference on Circuits, Systems, and Computers, Nov. 5-7, 1979.

b. L. L. Scharf and H. Elliott, "Aspects of Dynamic Programming in
Signal and Image Processing," IEEE Trans. on Autom. Control
(submitted Dec. 1979).

c. 0. Macchi and L. L. Scharf, "A Dynamic Programming Algorithm for

Phase Estimation and Data Decoding on Random Phase Channels," IEEE

Trans. on Inform. Theory (submitted Dec. 1979).

8. SCIENTIFIC PERSONNEL SUPPORTED BY THIS PROJECT AND DEGREES AWARDED
DURING THIS REPORTING PERIOD:

a. Louis L. Scharf (not actually supported during this period)
b. Helen Anderson, M.S. student
c. Kazam Kazampur, M.S. student
d. Freddie Hanson, Work-study
e. David C. Farden, Ph.D. - consultant

16437-EL

LOUIS L. SCHARF
COLORADO STATE UNIVERSITY
ELECTRICAL ENGINEERING DEPARTMENT
FT. COLLINS, CO 80523
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BRIEF OUTLINE OF RESEARCH FINDINGS

We are pursuing research on three distinct but related problems:

(1) phase model extension to include random phase modulation, random PH

modulation, and random chirp modulation; (2) frequency estimation in

signal-plus-noise and autoregressive models; (3) dynamic programming
algorithm development for FM tracking; and (4) simultaneous phase tracking
and data decoding on random phase channels.

(1) Phase Model Extension: Here we have derived phase models for random
phase, random FM, and random chirp modulation. Each model is a Markov chain
defined on cyclic group. Covariance and spectral results have been derived.

The results - not yet published - generalize existing results on the spectral
theory of chains, and leave us with the problem of selecting states, transi-

tion probabilities, and "run lengths" to achieve model matching with more

conventional models.

(2) Frequency Estimation: We have derived maximum likelihood frequency
estimators and Cramer-Rao bounds for estimating frequency in complex normal

signal-plus-noise and autoregressive models. The estimators have been simu-
lated and modulo-2r errors studied. The results explode a currently popular

myth regarding frequency tracking at low signal-to-noise ratios. Work will
probably be published shortly.

(3) Dynamic Programming Algorithm Development: In reports (a) and (b)
under item 7 of this document we have derived a dynamic programming algorithm
for picking the optimum frequency track through a sequence of contiguous FFT
maps to decode the MAP frequency sequence. Algorithm properties are under
study and software development will begin soon.

(4) Simultaneous Phase Tracking and Data Decoding: A principle of opti-
mality for phase tracking/data decoding has been derived and implemented in

software to decode data symbols transmitted over random phase channels.

Algorithm performance is treated in report (c) under item 7 of this report.

The algorithm - though complex - outperforms all competitors.
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PROGRESS REPORT

~(TWENTY COPIES REQUIRED)

1. ARO PROPOSAL NUMBER: DRXRO-PR P-16432-7L

2. PERIOD COVERED BY REPORT:- 1 September 1979 thru 30 June 1980

3. TITLE OF PROPOSAL: Viterbi Tracking of Randomly Phase

Modulated Data

4. CONTRACT OR GRANT NUMBER: DAAG29-79-C-0176

5. NAME OF INSTITUTION: Colorado State University

6. AUTHOR(S) OF REPORT: Louis L, Scharf

7. LIST OF MANUSCRIPTS SUBMITTED OR PUBLISHED UNDER ARO SPONSORSHIP
DURING THIS PERIOD, INCLUDING JOURNAL REFERENCES:

a. L. L. Scharf and H. Elliott, "A Random Sampler of Dynamic Programming
Applications in Signal Processing and Control," 13th Annual Asilomr
Conference on Circuits, Systems, and Computers, Nov. 5-7, 1979.

(con't. on b. L. L. Scharf and H. Elliott, "Aspects of Dynamic Programming in
attachment) Signal and Image Processing," IEEE Trans. on Autom. Control(sibmitted Dec. 1979).

8. SCIENTIFIC PERSONNEL SUPPORTED BY THIS PROJECT AND DEGREES AWARDED
!. DURING THIS REPORTING PERIOD:

a, Louis L. Scharf
b. Claude Gueguen, Visiting Professor
c. David C. Farden, Ph.D. - consultant
d. Helen Anderson, M.S. awarded May 1980
e. Freddie Hanson, Work-study

Dr. Louie L. Scharf 164 37-EL
Colorado State Univergity
Electrical Enqineering Department

Fort Collins, O 80523



7. (con't).

c. 0. Macchi and L. L. Scharf, "A Dynamic Programming Algorithm for
Phase Estimation and Data Decoding on Random Phase Channels,"
IEEE Trans. on Inform. Theory (submitted Dec. 1979; accepted April
1980).

d. L. L. Scharf, "Dynamic Programing for Phase and Frequency Tracking,"

NATO Advanced Study Institute on Underwater Acoustics and Signal
Processing, Copenhagen, Denmark, 18-29 August 1980.

e. C. Gueguen and L. L. Scharf, "Exact Maximum Likelihood Identification
of ARMA Models: A Signal Processing Perspective " Invited paper,
EUSIPCO-80, First European Signal Processing Conference, Swiss Federal i
Institute of Technology (EPFL), Lausanne, Switzerland, September 16-
19, 1980.

f. L. L. Scharf, D. D. Cox, C. J. Masreliez, "Modulo-2w Phase Sequence
Estimation," IEEE Trans. Inform. Theory (to appear Sept. 1980).



PROGRESS REPORT

(TWENTY COPIES REQUIRED)

1. ARO PROPOSAL NUMBER: npXIp -p p- I;437 - pT.

2. PERIOD COVERED BY REPORT: Thrnuigh 31 rpcpmnihr 1 QR9

3. TITLE OF PROPOSAL: Viterbi Tracking of Randly Ph;se P Mpdulat7 Data

4. CONTRACT OR GRANT NUMBER: DAAG 29 - 79 - C - 0176

5. NAME OF INSTITUTION: Colorado State University

6. AUTHOR(S) OF REPORT: Louis Scharf

7. LIST OF MANUSCRIPTS SUBMITTED OR PUBLISHED UNDER ARO SPONSORSHIP
DURING THIS PERIOD, INCLUDING JOURNAL REFERENCES:
a. LL Scharf and H Elliott, "Aspects of Dynamic Programming in Signal

Processing and Control, IEEE Trans on AC, 26, pp 1018-1029 (Oct 81)
b. 0. Macchi and LL Scharf, "A Dynamic Programing Algorithm for Phase

Estimation and Data Decoding on Random Phase Channels," IEEE Trans
on IT, 27, pp 581-595 (Sept 81)

c. LL Scha-r, CJ Gueguen, and JP Dugre, Parametric Spectrum Modelling:
A Signal Processing Perspective," ASSP Workshop, Hamilton (Aug 81)

8. SCIENTIFIC PERSONNEL SUPPORTED BY THIS PROJECT AND DEGREES AWARDED
DURING THIS REPORTING PERIOD:

a. LL Scharf
b. JP Dugre, Ph.D., July 1981

N.B. Copies of abstracts follow.

Dr. Louis L. Scharf 16437-EL
Colorado State University
Electrical Engineering Department
Fort Collins, CO 80523



BRIEF OUTLINE OF RESEARCH FINDINGS

The last progress report contained a complete list of accomplishments and
ongoing work. That outline remains in force, with the addition of the
following

a. Phase model Extension. We are in the process of writing up our work

on phase models on the circle. This work could lead the way to Liltering
on finite groups, a topic I raised to ARO in a letter to Suttle a year ago.

b. ARMA Sxstems. We have reformulated the autoregressive moving average
(A1M4A) modelling problem in terms of linear transformations, rather than
linear filters. It's too early to give a prognosis, but new insights
are developing. An invited paper for IEEE Trans on ASSP is in progress.
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Colorado State University
Department of Electrical Engineering Fort Collins. Colorado

80523

June 11, 1980

Dr. Jimmie R. Suttle, Director
Electronics Division
U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709

Dear Dr. Suttle:

Here is my brief report on scientific accomplishments.

PROJECT: Viterbi Tracking of Randomly Phase Modulated Data
DAAG29-79-C-0176

OUTLINE: At Colorado State University the principal investigator and
his associates are working on a nonlinear smoothing theory for randomly
phase- and frequency-modulated information. The invesLigator's phase
tracker has been generalized to a frequency tracker. Simulation and
theoretical performance evaluations are in progress. Analytical investi-
gation of Markov chains as approximants to FM signals is proceeding.

Application of these results arise in 1) detection and estimation
of feeble sinusoidal signals (such as oscillation modes), 2) phase
synchronization of data transmission systems, and 3) decoding of fre-
quency-hopped FM signals.

INTERACTIONS: Irv Kullback, U.S. Army personnel, and USC Research group
at Ft. Monmouth, May 29, 1980. (Meeting organized by Dr. Wm. Sander
ARO).

Louis L. Scharf
Professor

Electrical Engineering

LS:fr

I.



II

Recent (Jutstandinq Acca plisuneil: / - -017(,

July 12, 1982

The problem of FM divdulation has a long hi.;try (f r_.,drch .iI(1'1 development in electrital engineering. In its moderrn fonrm the problcn
is to estimate phase or frequency sequences fron dait:,,ta and to u ;e

these estimates in conventional and spread spectrum cowuication systeuts.

The principal investigator and his associateu hA., devuped nudeh;
for random phase and frequency sequences and derived likelihood expressions
for noisy observations of them. The investigator; hwAve applicl dynanic
programuing to find an algoritA4for computing the inax unm of the likelihood.
The algorithm has been applied lb the decoding of binary, pha se-shift-keyed,
and quadrature-shift-keyed data sequences.

The results of this research suggest that there are ntm L-rous rionii,,lear
filtering probLems in signal and image processing that can W- formalated
and solved as nonline4 sequence estimation problaus. Aaong the possibilities
are boundary estimatio4 in noisy black and White iniages, tom-xraphic izmage
reconstructive in noisl CAT Scans, and vehicle track jug Iran inccmplete and
noisy measurements.



APPENDIX C : Army Sponsored Meetings Attended by PI

The Principal Investigator attended the following ARO-sponsored meetings

at Fort Monmouth:

Spread Spectrum, 29 May 1980
Fort Monmouth, New Jersey

Spread Spectrum Seminar, 22 May 1981

Fort Monmouth, New Jersey

At the 22 May 1981 meeting he presented a paper titled,

"Viterbi Tracking of Randomly Phase-Modulated Date"

':!



TENTATIVE AGENDA

SPREAD SPECTRUM SEMINAR
Fort Monmouth, NJ

May 22, 1981

0830 Army Presentations

1030 Break

1045 Spread Spectrum Receiver Using SAW Devices
Prof. Pankaj Das, Rennselaer Polytechnic Insitute

1130 Viterbi Tracking of Randomly Phase Modulated Data
Prof. Louis Scharf, Colorado State University

1215 Lunch

1315 Research in Digital Communications
Prof. Robert Scholtz, University of Southern California
Prof. William Lindsey, University of Southern California

1445 Break

1500 Spread Spectrum Communications
Prof. Michael Pursley, University of Illinois
Prof. Robert McEliece, University of Illinois

1630 Closing
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